from cltrier_prosem import Pipeline
# init pipeline object (load model, data, trainer)
pipeline = Pipeline({
'encoder': {
'model': 'deepset/gbert-base', # huggingface model slug
},
'dataset': {
'path': './path/data', # path to data directory (containing train/test.parquet)
'text_column': 'text', # column containing src text
'label_column': 'label', # column containing target label
'label_classes': ['class_1', 'class_2'], # list of target classes
},
'classifier': {
'hid_size': 512, # size of classifier perceptron
'dropout': 0.2, # dropout value
},
'pooler': {
'form': 'cls',
# type of pooling, possible values:
# 'cls', 'sent_mean', 'subword_{first|last|mean|min|max}'
# if subword probing used
'span_columns': ['span']
},
'trainer': {
'num_epochs': 5, # number of training epochs
'batch_size': 32, # batch size in both training and evaluation
'learning_rate': 1e-3, # trainer learning rate
'export_path': './path/output', # output path for logging and results
},
})
# call pipeline object (training and evaluation)
pipeline()
-
Notifications
You must be signed in to change notification settings - Fork 0
License
cl-trier/cltrier_prosem
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
About
No description, website, or topics provided.
Resources
License
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published