Skip to content

Commit

Permalink
reorder readme
Browse files Browse the repository at this point in the history
  • Loading branch information
jwmueller authored Sep 27, 2024
1 parent c5b7735 commit c555fd8
Showing 1 changed file with 27 additions and 27 deletions.
54 changes: 27 additions & 27 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,33 +6,33 @@ To quickly learn how to run cleanlab on your own data, first check out the [quic

## Table of Contents

| | Example | Description |
| --- | ---------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| 1 | [datalab](datalab_image_classification/README.md) | Use Datalab to detect various types of data issues in (a subset of) the Caltech-256 image classification dataset. |
| 2 | [find_label_errors_iris](find_label_errors_iris/find_label_errors_iris.ipynb) | Find label errors introduced into the Iris classification dataset. |
| 3 | [classifier_comparison](classifier_comparison/classifier_comparison.ipynb) | Use CleanLearning to train 10 different classifiers on 4 dataset distributions with label errors. |
| 4 | [hyperparameter_optimization](hyperparameter_optimization/hyperparameter_optimization.ipynb) | Hyperparameter optimization to find the best settings of CleanLearning's optional parameters. |
| 5 | [simplifying_confident_learning](simplifying_confident_learning/simplifying_confident_learning.ipynb) | Straightforward implementation of Confident Learning algorithm with raw numpy code. |
| 6 | [visualizing_confident_learning](visualizing_confident_learning/visualizing_confident_learning.ipynb) | See how cleanlab estimates parameters of the label error distribution (noise matrix). |
| 7 | [find_tabular_errors](find_tabular_errors/find_tabular_errors.ipynb) | Handle mislabeled [tabular data](https://github.com/cleanlab/s/blob/master/student-grades-demo.csv) to improve a XGBoost classifier. |
| 8 | [fine_tune_LLM](fine_tune_LLM/LLM_with_noisy_labels_cleanlab.ipynb) | Fine-tuning OpenAI language models with noisily labeled text data |
| 9 | [cnn_mnist](cnn_mnist/find_label_errors_cnn_mnist.ipynb) | Finding label errors in MNIST image data with a [Convolutional Neural Network](https://github.com/cleanlab/cleanlab/blob/master/cleanlab/experimental/mnist_pytorch.py). |
| 10 | [huggingface_keras_imdb](huggingface_keras_imdb/huggingface_keras_imdb.ipynb) | CleanLearning for text classification with Keras Model + pretrained BERT backbone and Tensorflow Dataset. |
| 11 | [fasttext_amazon_reviews](fasttext_amazon_reviews/fasttext_amazon_reviews.ipynb) | Finding label errors in Amazon Reviews text dataset using a cleanlab-compatible [FastText model](fasttext_amazon_reviews/fasttext_wrapper.py). |
| 12 | [multiannotator_cifar10](multiannotator_cifar10/multiannotator_cifar10.ipynb) | Iteratively improve consensus labels and trained classifier from data labeled by multiple annotators. |
| 13 | [llm_evals_w_crowdlab](llm_evals_w_crowdlab/llm_evals_w_crowdlab.ipynb) | Reliable LLM Evaluation with multiple human/AI reviewers of varying competency (via CROWDLAB and LLM-as-judge GPT token probabilities). |
| 14 | [active_learning_multiannotator](active_learning_multiannotator/active_learning.ipynb) | Improve a classifier model by iteratively collecting additional labels from data annotators. This active learning pipeline considers data labeled in batches by multiple (imperfect) annotators. |
| 15 | [active_learning_single_annotator](active_learning_single_annotator/active_learning_single_annotator.ipynb) | Improve a classifier model by iteratively labeling batches of currently-unlabeled data. This demonstrates a standard active learning pipeline with *at most one label* collected for each example (unlike our multi-annotator active learning notebook which allows re-labeling). |
| 16 | [active_learning_transformers](active_learning_transformers/active_learning.ipynb) | Improve a Transformer model for classifying politeness of text by iteratively labeling and re-labeling batches of data using multiple annotators. If you haven't done active learning with re-labeling, try the [active_learning_multiannotator](active_learning_multiannotator/active_learning.ipynb) notebook first. |
| 17 | [outlier_detection_cifar10](outlier_detection_cifar10/outlier_detection_cifar10.ipynb) | Train AutoML for image classification and use it to detect out-of-distribution images. |
| 18 | [multilabel_classification](multilabel_classification/image_tagging.ipynb) | Find label errors in an image tagging dataset ([CelebA](https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html)) using a [Pytorch model](multilabel_classification/pytorch_network_training.ipynb) you can easily train for multi-label classification. |
| 19 | [entity_recognition](entity_recognition/) | Train Transformer model for Named Entity Recognition and produce out-of-sample `pred_probs` for **cleanlab.token_classification**. |
| 20 | [transformer_sklearn](transformer_sklearn/transformer_sklearn.ipynb) | How to use `KerasWrapperModel` to make any Keras model sklearn-compatible, demonstrated here for a BERT Transformer. |
| 21 | [cnn_coteaching_cifar10](cnn_coteaching_cifar10/README.md) | Train a [Convolutional Neural Network](https://github.com/cleanlab/cleanlab/blob/master/cleanlab/experimental/cifar_cnn.py) on noisily labeled Cifar10 image data using cleanlab with [coteaching](https://github.com/cleanlab/cleanlab/blob/master/cleanlab/experimental/coteaching.py). |
| 22 | [non_iid_detection](non_iid_detection/non_iid_detection.ipynb) | Use Datalab to detect non-IID sampling (e.g. drift) in datasets based on numeric features or embeddings. |
| 23 | [object_detection](object_detection/README.md) | Train Detectron2 object detection model for use with cleanlab. |
| 24 | [semantic segmentation](segmentation/training_ResNeXt50_for_Semantic_Segmentation_on_SYNTHIA.ipynb) | Train ResNeXt semantic segmentation model for use with cleanlab. |
| 24 | [spurious correlations](spurious_correlations_datalab/detecting_spurious_correlations.ipynb) | Train a CNN model on spurious and non-spurious versions of a subset of [Food-101](https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/) dataset. Use `Datalab` to detect issues in the spuriously correlated datasets. |
| Example | Description |
| ---------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| [datalab](datalab_image_classification/README.md) | Use Datalab to detect various types of data issues in (a subset of) the Caltech-256 image classification dataset. |
| [llm_evals_w_crowdlab](llm_evals_w_crowdlab/llm_evals_w_crowdlab.ipynb) | Reliable LLM Evaluation with multiple human/AI reviewers of varying competency (via CROWDLAB and LLM-as-judge GPT token probabilities). |
| [fine_tune_LLM](fine_tune_LLM/LLM_with_noisy_labels_cleanlab.ipynb) | Fine-tuning OpenAI language models with noisily labeled text data |
| [entity_recognition](entity_recognition/) | Train Transformer model for Named Entity Recognition and produce out-of-sample `pred_probs` for **cleanlab.token_classification**. |
| [multiannotator_cifar10](multiannotator_cifar10/multiannotator_cifar10.ipynb) | Iteratively improve consensus labels and trained classifier from data labeled by multiple annotators. |
| [active_learning_multiannotator](active_learning_multiannotator/active_learning.ipynb) | Improve a classifier model by iteratively collecting additional labels from data annotators. This active learning pipeline considers data labeled in batches by multiple (imperfect) annotators. |
| [active_learning_single_annotator](active_learning_single_annotator/active_learning_single_annotator.ipynb) | Improve a classifier model by iteratively labeling batches of currently-unlabeled data. This demonstrates a standard active learning pipeline with *at most one label* collected for each example (unlike our multi-annotator active learning notebook which allows re-labeling). |
| [active_learning_transformers](active_learning_transformers/active_learning.ipynb) | Improve a Transformer model for classifying politeness of text by iteratively labeling and re-labeling batches of data using multiple annotators. If you haven't done active learning with re-labeling, try the [active_learning_multiannotator](active_learning_multiannotator/active_learning.ipynb) notebook first. |
| [outlier_detection_cifar10](outlier_detection_cifar10/outlier_detection_cifar10.ipynb) | Train AutoML for image classification and use it to detect out-of-distribution images. |
| [multilabel_classification](multilabel_classification/image_tagging.ipynb) | Find label errors in an image tagging dataset ([CelebA](https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html)) using a [Pytorch model](multilabel_classification/pytorch_network_training.ipynb) you can easily train for multi-label classification. |
| [find_label_errors_iris](find_label_errors_iris/find_label_errors_iris.ipynb) | Find label errors introduced into the Iris classification dataset. |
| [classifier_comparison](classifier_comparison/classifier_comparison.ipynb) | Use CleanLearning to train 10 different classifiers on 4 dataset distributions with label errors. |
| [hyperparameter_optimization](hyperparameter_optimization/hyperparameter_optimization.ipynb) | Hyperparameter optimization to find the best settings of CleanLearning's optional parameters. |
| [simplifying_confident_learning](simplifying_confident_learning/simplifying_confident_learning.ipynb) | Straightforward implementation of Confident Learning algorithm with raw numpy code. |
| [visualizing_confident_learning](visualizing_confident_learning/visualizing_confident_learning.ipynb) | See how cleanlab estimates parameters of the label error distribution (noise matrix). |
| [find_tabular_errors](find_tabular_errors/find_tabular_errors.ipynb) | Handle mislabeled [tabular data](https://github.com/cleanlab/s/blob/master/student-grades-demo.csv) to improve a XGBoost classifier. |
| [cnn_mnist](cnn_mnist/find_label_errors_cnn_mnist.ipynb) | Finding label errors in MNIST image data with a [Convolutional Neural Network](https://github.com/cleanlab/cleanlab/blob/master/cleanlab/experimental/mnist_pytorch.py). |
| [huggingface_keras_imdb](huggingface_keras_imdb/huggingface_keras_imdb.ipynb) | CleanLearning for text classification with Keras Model + pretrained BERT backbone and Tensorflow Dataset. |
| [fasttext_amazon_reviews](fasttext_amazon_reviews/fasttext_amazon_reviews.ipynb) | Finding label errors in Amazon Reviews text dataset using a cleanlab-compatible [FastText model](fasttext_amazon_reviews/fasttext_wrapper.py). |
| [transformer_sklearn](transformer_sklearn/transformer_sklearn.ipynb) | How to use `KerasWrapperModel` to make any Keras model sklearn-compatible, demonstrated here for a BERT Transformer. |
| [cnn_coteaching_cifar10](cnn_coteaching_cifar10/README.md) | Train a [Convolutional Neural Network](https://github.com/cleanlab/cleanlab/blob/master/cleanlab/experimental/cifar_cnn.py) on noisily labeled Cifar10 image data using cleanlab with [coteaching](https://github.com/cleanlab/cleanlab/blob/master/cleanlab/experimental/coteaching.py). |
| [non_iid_detection](non_iid_detection/non_iid_detection.ipynb) | Use Datalab to detect non-IID sampling (e.g. drift) in datasets based on numeric features or embeddings. |
| [object_detection](object_detection/README.md) | Train Detectron2 object detection model for use with cleanlab. |
| [semantic segmentation](segmentation/training_ResNeXt50_for_Semantic_Segmentation_on_SYNTHIA.ipynb) | Train ResNeXt semantic segmentation model for use with cleanlab. |
| [spurious correlations](spurious_correlations_datalab/detecting_spurious_correlations.ipynb) | Train a CNN model on spurious and non-spurious versions of a subset of [Food-101](https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/) dataset. Use `Datalab` to detect issues in the spuriously correlated datasets. |


## Instructions
Expand Down

0 comments on commit c555fd8

Please sign in to comment.