Skip to content

Commit

Permalink
Add weighting to dice loss in semantic trainer (#656)
Browse files Browse the repository at this point in the history
Add weighted dice loss to semantic trainer
  • Loading branch information
anwai98 authored Jul 11, 2024
1 parent d6ffc0a commit 7c6e1a4
Showing 1 changed file with 12 additions and 1 deletion.
13 changes: 12 additions & 1 deletion micro_sam/training/semantic_sam_trainer.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
import time
from typing import Optional

import torch
import torch.nn as nn
Expand Down Expand Up @@ -37,6 +38,7 @@ def __init__(
self,
convert_inputs,
num_classes: int,
dice_weight: Optional[float] = None,
**kwargs
):
assert num_classes > 1
Expand All @@ -48,6 +50,11 @@ def __init__(
self.convert_inputs = convert_inputs
self.num_classes = num_classes
self.compute_ce_loss = nn.CrossEntropyLoss()
self.dice_weight = dice_weight

if self.dice_weight is not None:
assert self.dice_weight > 0 and self.dice_weight < 1, "The weight factor should lie between 0 and 1."

self._kwargs = kwargs

def _compute_loss(self, y, masks):
Expand All @@ -58,7 +65,11 @@ def _compute_loss(self, y, masks):
# Compute cross entropy loss for the predictions
ce_loss = self.compute_ce_loss(masks, target.squeeze(1).long())

net_loss = dice_loss + ce_loss
if self.dice_weight is None:
net_loss = dice_loss + ce_loss
else:
net_loss = self.dice_weight * dice_loss + (1 - self.dice_weight) * ce_loss

return net_loss

def _get_model_outputs(self, batched_inputs):
Expand Down

0 comments on commit 7c6e1a4

Please sign in to comment.