Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add PALM dataset #402

Merged
merged 3 commits into from
Nov 5, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
29 changes: 29 additions & 0 deletions scripts/datasets/medical/check_palm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,29 @@
import os
import sys

from torch_em.util.debug import check_loader
from torch_em.data.datasets import get_palm_loader


sys.path.append("..")


def check_palm():
from util import ROOT

loader = get_palm_loader(
path=os.path.join(ROOT, "palm"),
patch_shape=(512, 512),
batch_size=1,
split="Training",
label_choice="disc",
resize_inputs=True,
download=True,
shuffle=True,
)

check_loader(loader, 8)


if __name__ == "__main__":
check_palm()
1 change: 1 addition & 0 deletions torch_em/data/datasets/medical/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,7 @@
from .oasis import get_oasis_dataset, get_oasis_loader
from .oimhs import get_oimhs_dataset, get_oimhs_loader
from .osic_pulmofib import get_osic_pulmofib_dataset, get_osic_pulmofib_loader
from .palm import get_palm_dataset, get_palm_loader
from .panorama import get_panorama_dataset, get_panorama_loader
from .papila import get_papila_dataset, get_papila_loader
from .pengwin import get_pengwin_dataset, get_pengwin_loader
Expand Down
175 changes: 175 additions & 0 deletions torch_em/data/datasets/medical/palm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,175 @@
"""The PALM dataset contains annotations for optic disc and lesion segmentation
in Fundus images.

The dataset is from the publication https://doi.org/10.1038/s41597-024-02911-2.
Please cite it if you use this dataset for your research.
"""

import os
import shutil
from glob import glob
from natsort import natsorted
from typing import Union, Tuple, Literal, List

import imageio.v3 as imageio

from torch.utils.data import Dataset, DataLoader

import torch_em

from .. import util


URL = "https://springernature.figshare.com/ndownloader/files/37786152"
CHECKSUM = "21cd568a00a50287370572ea81b50847085819bd2f732331ee9cdc6367e6cd1f"


def get_palm_data(path: Union[os.PathLike, str], download: bool = False) -> str:
"""Download the PALM data.

Args:
path: Filepath to a folder where the data is downloaded for further processing.
download: Whether to download the data if it is not present.

Returns:
Filepath where the data is downloaded.
"""
data_dir = os.path.join(path, "PALM")
if os.path.exists(data_dir):
return data_dir

os.makedirs(path, exist_ok=True)

zip_path = os.path.join(path, "data.zip")
util.download_source(path=zip_path, url=URL, download=download, checksum=CHECKSUM)
util.unzip(zip_path=zip_path, dst=path)

shutil.rmtree(os.path.join(path, "__MACOSX"))

return data_dir


def _preprocess_labels(label_paths):
neu_label_paths = [p.replace(".bmp", "_preprocessed.tif") for p in label_paths]
for lpath, neu_lpath in zip(label_paths, neu_label_paths):
if os.path.exists(neu_lpath):
continue

label = imageio.imread(lpath)
imageio.imwrite(neu_lpath, (label == 0).astype(int), compression="zlib")

return neu_label_paths


def get_palm_paths(
path: Union[os.PathLike, str],
split: Literal["Training", "Validation", "Testing"],
label_choice: Literal["disc", "atrophy_lesion", "detachment_lesion"] = "disc",
download: bool = False
) -> Tuple[List[str], List[str]]:
"""Get paths to the PALM data.

Args:
path: Filepath to a folder where the downloaded data will be saved.
split: The choice of data split.
label_choice: The choice of label masks.
download: Whether to download the data if it is not present.

Returns:
List of filepaths for the image data.
List of filepaths for the label data.
"""
data_dir = get_palm_data(path, download)

assert split in ["Training", "Validation", "Testing"], f"'{split}' is not a valid split."

if label_choice == "disc":
ldir = "Disc Masks"
elif label_choice == "atrophy_lesion":
ldir = "Lesion Masks/Atrophy"
elif label_choice == "detachment_lesion":
ldir = "Lesion Masks/Detachment"
else:
raise ValueError(f"'{label_choice}' is not a valid choice of labels.")

label_paths = natsorted(glob(os.path.join(data_dir, split, ldir, "*.bmp")))
label_paths = _preprocess_labels(label_paths)

raw_paths = [p.replace(ldir, "Images") for p in label_paths]
raw_paths = [p.replace("_preprocessed.tif", ".jpg") for p in raw_paths]

assert len(label_paths) == len(raw_paths)

return raw_paths, label_paths


def get_palm_dataset(
path: Union[os.PathLike, str],
patch_shape: Tuple[int, int],
split: Literal["Training", "Validation", "Testing"],
label_choice: Literal["disc", "atrophy_lesion", "detachment_lesion"] = "disc",
resize_inputs: bool = False,
download: bool = False,
**kwargs
) -> Dataset:
"""Get the PALM dataset for disc and lesion segmentation.

Args:
path: Filepath to a folder where the downloaded data will be saved.
patch_shape: The patch shape to use for training.
split: The choice of data split.
label_choice: The choice of label masks.
resize_inputs: Whether to resize the inputs to the expected patch shape.
download: Whether to download the data if it is not present.
kwargs: Additional keyword arguments for `torch_em.default_segmentation_dataset`.

Returns:
The segmentation dataset.
"""
raw_paths, label_paths = get_palm_paths(path, split, label_choice, download)

if resize_inputs:
resize_kwargs = {"patch_shape": patch_shape, "is_rgb": True}
kwargs, patch_shape = util.update_kwargs_for_resize_trafo(
kwargs=kwargs, patch_shape=patch_shape, resize_inputs=resize_inputs, resize_kwargs=resize_kwargs
)

return torch_em.default_segmentation_dataset(
raw_paths=raw_paths,
raw_key=None,
label_paths=label_paths,
label_key=None,
patch_shape=patch_shape,
is_seg_dataset=False,
**kwargs
)


def get_palm_loader(
path: Union[os.PathLike, str],
batch_size: int,
patch_shape: Tuple[int, int],
split: Literal["Training", "Validation", "Testing"],
label_choice: Literal["disc", "atrophy_lesion", "detachment_lesion"] = "disc",
resize_inputs: bool = False,
download: bool = False,
**kwargs
) -> DataLoader:
"""Get the PALM dataloader for disc and lesion segmentation.

Args:
path: Filepath to a folder where the downloaded data will be saved.
batch_size: The batch size for training.
patch_shape: The patch shape to use for training.
split: The choice of data split.
label_choice: The choice of label masks.
resize_inputs: Whether to resize the inputs to the expected patch shape.
download: Whether to download the data if it is not present.
kwargs: Additional keyword arguments for `torch_em.default_segmentation_dataset` or for the PyTorch DataLoader.

Returns:
The DataLoader.
"""
ds_kwargs, loader_kwargs = util.split_kwargs(torch_em.default_segmentation_dataset, **kwargs)
dataset = get_palm_dataset(path, patch_shape, split, label_choice, resize_inputs, download, **ds_kwargs)
return torch_em.get_data_loader(dataset, batch_size, **loader_kwargs)