Skip to content

Commit

Permalink
Adding helper functions
Browse files Browse the repository at this point in the history
  • Loading branch information
CohenCyril committed Nov 14, 2023
1 parent c2e4027 commit 0dd378d
Show file tree
Hide file tree
Showing 4 changed files with 135 additions and 11 deletions.
1 change: 1 addition & 0 deletions _CoqProject
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@ theories/Param_paths.v
theories/Param_sigma.v
theories/Param_prod.v
theories/Param_option.v
theories/Common.v

examples/Example.v
examples/int_to_Zp.v
Expand Down
16 changes: 6 additions & 10 deletions examples/peano_bin_nat.v
Original file line number Diff line number Diff line change
Expand Up @@ -92,7 +92,7 @@ Definition Nsucc (n : N) := Npos (succ_pos n).
Definition Nadd (m n : N) := match m, n with
| N0, x | x, N0 => x
| Npos p, Npos q => Npos (Pos.add p q)
end.
end.
Infix "+" := Nadd : N_scope.
Notation "n .+1" := (Nsucc n) : N_scope.

Expand All @@ -107,7 +107,7 @@ Definition Nmap (n : N) : nat :=
Fixpoint Ncomap (n : nat) : N :=
match n with O => 0 | S n => Nsucc (Ncomap n) end.

Definition RN@{} (m : N) (n : nat) := paths@{Set} (Ncomap n) m.
Definition RN@{} := sym_rel@{Set} (graph@{Set} Ncomap).

Lemma Naddpp p : (Npos p + Npos p)%N = Npos p~0.
Proof. by elim: p => //= p IHp; rewrite Pos.addpp. Qed.
Expand All @@ -127,16 +127,12 @@ Proof. by move=> kp; rewrite NcomapD kp Naddpp. Qed.
Lemma NmapK (n : N) : Ncomap (Nmap n) = n.
Proof. by case: n => //= ; elim=> //= p /NcomapNpos/= ->. Qed.

Lemma Nmap_in_R@{} (m : N) (n : nat) :
paths@{Set} (Nmap m) n -> sym_rel@{Set} RN n m.
Proof. by move<-; apply: NmapK. Qed.

(* the best we can do to link these types is (4,4), but
we only need (2a,3) which is morally that Nmap is a split injection *)

Definition RN2a3@{} : Param2a3.Rel@{Set} N nat := @Param2a3.BuildRel@{Set} N nat RN@{}
(@Map2a.BuildHas@{Set} _ _ _ Nmap Nmap_in_R)
(@Map3.BuildHas@{Set} _ _ _ Ncomap (fun _ _ p => p) (fun _ _ p => p)).
Definition RN2a3 : Param2a3.Rel@{Set} N nat := SplitInj.toParamSym@{Set} {|
SplitInj.retract := Ncomap;
SplitInj.section := Nmap;
SplitInj.sectionK := NmapK |}.

(* for brevity, we create witnesses at lower classes by forgetting fields in RN2a3 *)
(* this behaviour can be automated so as to only declare Rn2a3 and get for free all the instances
Expand Down
127 changes: 127 additions & 0 deletions theories/Common.v
Original file line number Diff line number Diff line change
@@ -0,0 +1,127 @@
(*****************************************************************************)
(* * Trocq *)
(* _______ * Copyright (C) 2023 MERCE *)
(* |__ __| * (Mitsubishi Electric R&D Centre Europe) *)
(* | |_ __ ___ ___ __ _ * Cyril Cohen <[email protected]> *)
(* | | '__/ _ \ / __/ _` | * Enzo Crance <[email protected]> *)
(* | | | | (_) | (_| (_| | * Assia Mahboubi <[email protected]> *)
(* |_|_| \___/ \___\__, | ************************************************)
(* | | * This file is distributed under the terms of *)
(* |_| * GNU Lesser General Public License Version 3 *)
(* * see LICENSE file for the text of the license *)
(*****************************************************************************)

Require Import ssreflect.
From elpi Require Export elpi.
From HoTT Require Export HoTT.
From Trocq Require Export
HoTT_additions Hierarchy Param_Type Param_forall Param_arrow Database Param
Param_paths Vernac.

Definition graph@{i} {A B : Type@{i}} (f : A -> B) := paths o f.

Module Fun.
Section Fun.
Universe i.
Context {A B : Type@{i}} (f : A -> B) (g : B -> A).
Definition toParam : Param40.Rel@{i} A B :=
@Param40.BuildRel A B (graph f)
(@Map4.BuildHas@{i} _ _ _ _
(fun _ _ => id) (fun _ _ => id) (fun _ _ _ => 1%path))
(@Map0.BuildHas@{i} _ _ _).

Definition toParamSym : Param04.Rel@{i} A B :=
@Param04.BuildRel A B (sym_rel (graph g))
(@Map0.BuildHas@{i} _ _ _)
(@Map4.BuildHas@{i} _ _ _ g (fun _ _ => id) (fun _ _ => id)
(fun _ _ _ => 1%path)).
End Fun.
End Fun.

Module SplitInj.
Section SplitInj.
Universe i.
Context {A B : Type@{i}}.
Record type@{} := {
section :> A -> B;
retract : B -> A;
sectionK : forall x, retract (section x) = x
}.

Definition fromParam@{} (R : Param2a2b.Rel@{i} A B) := {|
section := map R;
retract := comap R;
sectionK x := R_in_comap R _ _ (map_in_R R _ _ 1%path)
|}.

Section to.
Variable (f : type).

Let section_in_retract b a (e : f a = b) : retract f b = a :=
transport (fun x => retract f x = a) e (sectionK f a).

Definition toParam@{} : Param42b.Rel@{i} A B :=
@Param42b.BuildRel A B (graph f)
(@Map4.BuildHas@{i} _ _ _ _ (fun _ _ => id) (fun _ _ => id)
(fun _ _ _ => 1%path))
(@Map2b.BuildHas@{i} _ _ _ _ section_in_retract).

Definition toParamSym@{} : Param2a4.Rel@{i} A B :=
@Param2a4.BuildRel A B (sym_rel (graph (retract f)))
(@Map2a.BuildHas@{i} _ _ _ _ (fun a b => @section_in_retract b a))
(@Map4.BuildHas@{i} _ _ _ _ (fun _ _ => id) (fun _ _ => id)
(fun _ _ _ => 1%path)).
End to.

End SplitInj.
End SplitInj.

Module SplitSurj.
Section SplitSurj.
Universe i.
Context {A B : Type@{i}}.
Record type := {
retract :> A -> B;
section : B -> A;
sectionK : forall x, retract (section x) = x
}.

Definition fromParam@{} (R : Param2b2a.Rel@{i} A B) := {|
retract := map R;
section := comap R;
sectionK x := R_in_map R (comap R x) x (comap_in_R R x (comap R x) 1%path)
|}.

Section to.
Context (f : type).

Let section_in_retract b a (e : section f b = a) : f a = b :=
transport (fun x => f x = b) e (sectionK f b).

Definition toParam@{} : Param42a.Rel@{i} A B :=
@Param42a.BuildRel A B (graph f)
(@Map4.BuildHas@{i} _ _ _ _ (fun _ _ => id) (fun _ _ => id)
(fun _ _ _ => 1%path))
(@Map2a.BuildHas@{i} _ _ _ _ section_in_retract).

Definition toParamSym@{} : Param2b4.Rel@{i} A B :=
@Param2b4.BuildRel A B (sym_rel (graph (section f)))
(@Map2b.BuildHas@{i} _ _ _ _ (fun a b => @section_in_retract b a))
(@Map4.BuildHas@{i} _ _ _ _ (fun _ _ => id) (fun _ _ => id)
(fun _ _ _ => 1%path)).
End to.

End SplitSurj.
End SplitSurj.

Module Equiv.
(* This is exactly adjointify *)
Definition fromParam@{i} {A B : Type@{i}} (R : Param33.Rel@{i} A B) :
A <~> B := {|
equiv_fun := map R;
equiv_isequiv := isequiv_adjointify _ (comap R)
(fun b => R_in_map R _ _ (comap_in_R R _ _ 1%path))
(fun a => R_in_comap R _ _ (map_in_R R _ _ 1%path))
|}.

End Equiv.
2 changes: 1 addition & 1 deletion theories/Trocq.v
Original file line number Diff line number Diff line change
Expand Up @@ -15,4 +15,4 @@ From elpi Require Export elpi.
From HoTT Require Export HoTT.
From Trocq Require Export
HoTT_additions Hierarchy Param_Type Param_forall Param_arrow Database Param
Param_paths Vernac.
Param_paths Vernac Common.

0 comments on commit 0dd378d

Please sign in to comment.