-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
♻️ Move proofs about nat in a separate file
- Loading branch information
1 parent
a9051c6
commit 661624c
Showing
3 changed files
with
116 additions
and
41 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,115 @@ | ||
(*****************************************************************************) | ||
(* * Trocq *) | ||
(* _______ * Copyright (C) 2023 MERCE *) | ||
(* |__ __| * (Mitsubishi Electric R&D Centre Europe) *) | ||
(* | |_ __ ___ ___ __ _ * Cyril Cohen <[email protected]> *) | ||
(* | | '__/ _ \ / __/ _` | * Enzo Crance <[email protected]> *) | ||
(* | | | | (_) | (_| (_| | * Assia Mahboubi <[email protected]> *) | ||
(* |_|_| \___/ \___\__, | ************************************************) | ||
(* | | * This file is distributed under the terms of *) | ||
(* |_| * GNU Lesser General Public License Version 3 *) | ||
(* * see LICENSE file for the text of the license *) | ||
(*****************************************************************************) | ||
|
||
From Coq Require Import ssreflect. | ||
From HoTT Require Import HoTT. | ||
Require Import HoTT_additions Hierarchy. | ||
|
||
Set Universe Polymorphism. | ||
Unset Universe Minimization ToSet. | ||
|
||
Inductive natR : nat -> nat -> Type := | ||
| OR : natR O O | ||
| SR : forall (n n' : nat), natR n n' -> natR (S n) (S n'). | ||
|
||
Definition map_nat : nat -> nat := id. | ||
|
||
Definition map_in_R_nat : forall {n n' : nat}, map_nat n = n' -> natR n n' := | ||
fun n n' e => | ||
match e with | ||
| idpath => | ||
(fix F n := | ||
match n with | ||
| O => OR | ||
| S m => SR m m (F m) | ||
end) n | ||
end. | ||
|
||
Definition R_in_map_nat : forall {n n' : nat}, natR n n' -> map_nat n = n' := | ||
fix F n n' (nR : natR n n') : map_nat n = n' := | ||
match nR with | ||
| OR => idpath | ||
| SR m m' mR => ap S (F m m' mR) | ||
end. | ||
|
||
Axiom cheat : forall A, A. | ||
Ltac cheat := apply cheat. | ||
|
||
Definition R_in_mapK_nat : forall {n n' : nat} (nR : natR n n'), | ||
map_in_R_nat (R_in_map_nat nR) = nR. | ||
Proof. | ||
intros n n' nR. | ||
induction nR. | ||
- simpl. reflexivity. | ||
- simpl. unfold map_in_R_nat. | ||
elim IHnR. | ||
elim (R_in_map_nat nR). | ||
cheat. | ||
Defined. | ||
|
||
Definition natR_sym : forall (n n' : nat), sym_rel natR n n' <~> natR n n'. | ||
Proof. | ||
intros n n'. | ||
unshelve econstructor. | ||
- intros nR. unfold sym_rel in nR. | ||
induction nR. | ||
+ exact OR. | ||
+ exact (SR n' n IHnR). | ||
- unshelve econstructor. | ||
+ intros nR. unfold sym_rel. | ||
induction nR. | ||
* exact OR. | ||
* exact (SR n' n IHnR). | ||
+ intros nR. induction nR. | ||
* simpl. reflexivity. | ||
* simpl. apply ap. apply IHnR. | ||
+ intros nR. unfold sym_rel in nR. | ||
induction nR. | ||
* simpl. reflexivity. | ||
* simpl. apply ap. apply IHnR. | ||
+ simpl. intros nR. unfold sym_rel in nR. | ||
induction nR. | ||
* simpl. reflexivity. | ||
* simpl. cheat. | ||
Defined. | ||
|
||
Definition Map4_nat : Map4.Has natR. | ||
Proof. | ||
unshelve econstructor. | ||
- exact map_nat. | ||
- exact @map_in_R_nat. | ||
- exact @R_in_map_nat. | ||
- exact @R_in_mapK_nat. | ||
Defined. | ||
|
||
Definition Param44_nat : Param44.Rel nat nat. | ||
Proof. | ||
unshelve econstructor. | ||
- exact natR. | ||
- exact Map4_nat. | ||
- apply (fun e => @eq_Map4 _ _ (sym_rel natR) natR e Map4_nat). | ||
apply natR_sym. | ||
Defined. | ||
|
||
Definition Param00_nat : Param00.Rel nat nat := Param44_nat. | ||
Definition Param2a0_nat : Param2a0.Rel nat nat := Param44_nat. | ||
|
||
Definition Param_add : | ||
forall (n1 n1' : nat) (n1R : natR n1 n1') (n2 n2' : nat) (n2R : natR n2 n2'), | ||
natR (n1 + n2) (n1' + n2'). | ||
Proof. | ||
intros n1 n1' n1R n2 n2' n2R. | ||
induction n1R as [|n1 n1' n1R IHn1R]. | ||
- simpl. exact n2R. | ||
- simpl. apply SR. exact IHn1R. | ||
Defined. |