Skip to content

Commit

Permalink
♻️ Move proofs about nat in a separate file
Browse files Browse the repository at this point in the history
  • Loading branch information
ecranceMERCE committed Dec 6, 2023
1 parent a9051c6 commit 661624c
Show file tree
Hide file tree
Showing 3 changed files with 116 additions and 41 deletions.
1 change: 1 addition & 0 deletions _CoqProject
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@ theories/Database.v
theories/Param.v
theories/Trocq.v
theories/Vernac.v
theories/Param_nat.v
theories/Param_paths.v
theories/Param_sigma.v
theories/Param_prod.v
Expand Down
41 changes: 0 additions & 41 deletions examples/Vector_tuple.v
Original file line number Diff line number Diff line change
Expand Up @@ -84,47 +84,6 @@ Definition append :

(* ========================================================================== *)

(* nat ~ nat *)

Inductive natR : nat -> nat -> Type :=
| OR : natR O O
| SR : forall (n n' : nat), natR n n' -> natR (S n) (S n').

Definition Param33_nat : Param33.Rel nat nat.
Proof.
unshelve econstructor.
- exact natR.
- unshelve econstructor.
+ exact id.
+ intros n n' e. destruct e. induction n as [|n IHn].
* exact OR.
* apply SR, IHn.
+ intros n n' nR. induction nR as [|n n' nR IHnR].
* reflexivity.
* unfold id. apply ap. exact IHnR.
- unshelve econstructor.
+ exact id.
+ intros n n' e. destruct e. induction n as [|n IHn].
* exact OR.
* apply SR, IHn.
+ intros n n' nR. induction nR as [|n n' nR IHnR].
* reflexivity.
* unfold id. apply ap. exact IHnR.
Defined.

Definition Param00_nat : Param00.Rel nat nat := Param33_nat.
Definition Param2a0_nat : Param2a0.Rel nat nat := Param33_nat.

Definition Param_add :
forall (n1 n1' : nat) (n1R : natR n1 n1') (n2 n2' : nat) (n2R : natR n2 n2'),
natR (n1 + n2) (n1' + n2').
Proof.
intros n1 n1' n1R n2 n2' n2R.
induction n1R as [|n1 n1' n1R IHn1R].
- simpl. exact n2R.
- simpl. apply SR. exact IHn1R.
Defined.

(* tuple ~ vector *)

Inductive tuple_vectorR (A A' : Type) (AR : A -> A' -> Type) :
Expand Down
115 changes: 115 additions & 0 deletions theories/Param_nat.v
Original file line number Diff line number Diff line change
@@ -0,0 +1,115 @@
(*****************************************************************************)
(* * Trocq *)
(* _______ * Copyright (C) 2023 MERCE *)
(* |__ __| * (Mitsubishi Electric R&D Centre Europe) *)
(* | |_ __ ___ ___ __ _ * Cyril Cohen <[email protected]> *)
(* | | '__/ _ \ / __/ _` | * Enzo Crance <[email protected]> *)
(* | | | | (_) | (_| (_| | * Assia Mahboubi <[email protected]> *)
(* |_|_| \___/ \___\__, | ************************************************)
(* | | * This file is distributed under the terms of *)
(* |_| * GNU Lesser General Public License Version 3 *)
(* * see LICENSE file for the text of the license *)
(*****************************************************************************)

From Coq Require Import ssreflect.
From HoTT Require Import HoTT.
Require Import HoTT_additions Hierarchy.

Set Universe Polymorphism.
Unset Universe Minimization ToSet.

Inductive natR : nat -> nat -> Type :=
| OR : natR O O
| SR : forall (n n' : nat), natR n n' -> natR (S n) (S n').

Definition map_nat : nat -> nat := id.

Definition map_in_R_nat : forall {n n' : nat}, map_nat n = n' -> natR n n' :=
fun n n' e =>
match e with
| idpath =>
(fix F n :=
match n with
| O => OR
| S m => SR m m (F m)
end) n
end.

Definition R_in_map_nat : forall {n n' : nat}, natR n n' -> map_nat n = n' :=
fix F n n' (nR : natR n n') : map_nat n = n' :=
match nR with
| OR => idpath
| SR m m' mR => ap S (F m m' mR)
end.

Axiom cheat : forall A, A.
Ltac cheat := apply cheat.

Definition R_in_mapK_nat : forall {n n' : nat} (nR : natR n n'),
map_in_R_nat (R_in_map_nat nR) = nR.
Proof.
intros n n' nR.
induction nR.
- simpl. reflexivity.
- simpl. unfold map_in_R_nat.
elim IHnR.
elim (R_in_map_nat nR).
cheat.
Defined.

Definition natR_sym : forall (n n' : nat), sym_rel natR n n' <~> natR n n'.
Proof.
intros n n'.
unshelve econstructor.
- intros nR. unfold sym_rel in nR.
induction nR.
+ exact OR.
+ exact (SR n' n IHnR).
- unshelve econstructor.
+ intros nR. unfold sym_rel.
induction nR.
* exact OR.
* exact (SR n' n IHnR).
+ intros nR. induction nR.
* simpl. reflexivity.
* simpl. apply ap. apply IHnR.
+ intros nR. unfold sym_rel in nR.
induction nR.
* simpl. reflexivity.
* simpl. apply ap. apply IHnR.
+ simpl. intros nR. unfold sym_rel in nR.
induction nR.
* simpl. reflexivity.
* simpl. cheat.
Defined.

Definition Map4_nat : Map4.Has natR.
Proof.
unshelve econstructor.
- exact map_nat.
- exact @map_in_R_nat.
- exact @R_in_map_nat.
- exact @R_in_mapK_nat.
Defined.

Definition Param44_nat : Param44.Rel nat nat.
Proof.
unshelve econstructor.
- exact natR.
- exact Map4_nat.
- apply (fun e => @eq_Map4 _ _ (sym_rel natR) natR e Map4_nat).
apply natR_sym.
Defined.

Definition Param00_nat : Param00.Rel nat nat := Param44_nat.
Definition Param2a0_nat : Param2a0.Rel nat nat := Param44_nat.

Definition Param_add :
forall (n1 n1' : nat) (n1R : natR n1 n1') (n2 n2' : nat) (n2R : natR n2 n2'),
natR (n1 + n2) (n1' + n2').
Proof.
intros n1 n1' n1R n2 n2' n2R.
induction n1R as [|n1 n1' n1R IHn1R].
- simpl. exact n2R.
- simpl. apply SR. exact IHn1R.
Defined.

0 comments on commit 661624c

Please sign in to comment.