Skip to content

Commit

Permalink
Merge pull request #121 from cpmech/impl-multiple-root-finding
Browse files Browse the repository at this point in the history
Impl multiple root finding
  • Loading branch information
cpmech authored Jun 27, 2024
2 parents 840c1a8 + 369d5bb commit 1a149ba
Show file tree
Hide file tree
Showing 75 changed files with 71,247 additions and 648 deletions.
5 changes: 5 additions & 0 deletions .vscode/settings.json
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,9 @@
"brusselator",
"bweuler",
"Cephes",
"Cheby",
"Cᵢⱼₛₜ",
"Clenshaw",
"cmath",
"condest",
"copysign",
Expand Down Expand Up @@ -93,6 +95,7 @@
"msun",
"nelt",
"Nørsett",
"nroot",
"nstage",
"nstep",
"odyad",
Expand All @@ -109,6 +112,8 @@
"qzero",
"Radau",
"RINFOG",
"rootfinders",
"rootfinding",
"rowcol",
"rowcoliter",
"rowcolrig",
Expand Down
4 changes: 2 additions & 2 deletions russell_lab/Cargo.toml
Original file line number Diff line number Diff line change
Expand Up @@ -21,13 +21,13 @@ serde = { version = "1.0", features = ["derive"] }

[dev-dependencies]
criterion = "0.5"
plotpy = "0.6"
plotpy = "0.7"
serde_json = "1.0"
serial_test = "3.0"

[build-dependencies]
cc = "1.0"

[[bench]]
name = "matvec_benchmark"
name = "algo_chebyshev"
harness = false
114 changes: 112 additions & 2 deletions russell_lab/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -20,17 +20,22 @@ _This crate is part of [Russell - Rust Scientific Library](https://github.com/cp
- [Check first and second derivatives](#check-first-and-second-derivatives)
- [Bessel functions](#bessel-functions)
- [Linear fitting](#linear-fitting)
- [Chebyshev adaptive interpolation (given function)](#chebyshev-adaptive-interpolation-given-function)
- [Chebyshev adaptive interpolation (given data)](#chebyshev-adaptive-interpolation-given-data)
- [Chebyshev adaptive interpolation (given noisy data)](#chebyshev-adaptive-interpolation-given-noisy-data)
- [Lagrange interpolation](#lagrange-interpolation)
- [Solution of a 1D PDE using spectral collocation](#solution-of-a-1d-pde-using-spectral-collocation)
- [Numerical integration: perimeter of ellipse](#numerical-integration-perimeter-of-ellipse)
- [Finding a local minimum and a root](#finding-a-local-minimum-and-a-root)
- [Finding all roots in an interval](#finding-all-roots-in-an-interval)
- [Computing the pseudo-inverse matrix](#computing-the-pseudo-inverse-matrix)
- [Matrix visualization](#matrix-visualization)
- [Computing eigenvalues and eigenvectors](#computing-eigenvalues-and-eigenvectors)
- [Cholesky factorization](#cholesky-factorization)
- [Read a table-formatted data file](#read-a-table-formatted-data-file)
- [About the column major representation](#about-the-column-major-representation)
- [Benchmarks](#benchmarks)
- [Chebyshev polynomial evaluation](#chebyshev-polynomial-evaluation)
- [Jacobi Rotation versus LAPACK DSYEV](#jacobi-rotation-versus-lapack-dsyev)
- [Notes for developers](#notes-for-developers)

Expand Down Expand Up @@ -323,16 +328,51 @@ Results:



### Chebyshev adaptive interpolation (given function)

This example illustrates the use of `InterpChebyshev` to interpolate data given a function.

[See the code](https://github.com/cpmech/russell/tree/main/russell_lab/examples/algo_interp_chebyshev_adapt.rs)

Results:

![Chebyshev interpolation (given function)](data/figures/algo_interp_chebyshev_adapt.svg)



### Chebyshev adaptive interpolation (given data)

This example illustrates the use of `InterpChebyshev` to interpolate discrete data.

[See the code](https://github.com/cpmech/russell/tree/main/russell_lab/examples/algo_interp_chebyshev_data.rs)

Results:

![Chebyshev interpolation (given data)](data/figures/algo_interp_chebyshev_data.svg)



### Chebyshev adaptive interpolation (given noisy data)

This example illustrates the use of `InterpChebyshev` to interpolate noisy data.

[See the code](https://github.com/cpmech/russell/tree/main/russell_lab/examples/algo_interp_chebyshev_noisy_data.rs)

Results:

![Chebyshev interpolation (given noisy data)](data/figures/algo_interp_chebyshev_noisy_data.svg)



### Lagrange interpolation

This example illustrates the use of `InterpLagrange` with at Chebyshev-Gauss-Lobatto grid to interpolate Runge's equation.

[See the code](https://github.com/cpmech/russell/tree/main/russell_lab/examples/algo_interpolation_lagrange.rs)
[See the code](https://github.com/cpmech/russell/tree/main/russell_lab/examples/algo_interp_lagrange.rs)

Results:

![algo_interpolation_lagrange](data/figures/algo_interpolation_lagrange.svg)
![algo_interp_lagrange](data/figures/algo_interp_lagrange.svg)



Expand Down Expand Up @@ -440,6 +480,69 @@ Total computation time = 907ns
```


### Finding all roots in an interval

This example employs a Chebyshev interpolant to find all roots of a function in an interval. The method uses adaptive interpolation followed by calculating the eigenvalues of the companion matrix. These eigenvalues equal the roots of the polynomial. After that, a simple Newton refining (polishing) algorithm is applied.

[See the code](https://github.com/cpmech/russell/tree/main/russell_lab/examples/algo_root_finding_chebyshev.rs)

The output looks like:

```text
N = 184
roots =
┌ ┐
│ 0.04109147217011577 │
│ 0.1530172326889439 │
│ 0.25340124027487965 │
│ 0.33978749525956276 │
│ 0.47590538542276967 │
│ 0.5162732673126048 │
└ ┘
f @ roots =
┌ ┐
│ 1.84E-08 │
│ -1.51E-08 │
│ -2.40E-08 │
│ 9.53E-09 │
│ -1.16E-08 │
│ -5.80E-09 │
└ ┘
refined roots =
┌ ┐
│ 0.04109147155278252 │
│ 0.15301723213859994 │
│ 0.25340124149692184 │
│ 0.339787495774806 │
│ 0.47590538689192813 │
│ 0.5162732665558162 │
└ ┘
f @ refined roots =
┌ ┐
│ 6.66E-16 │
│ -2.22E-16 │
│ -2.22E-16 │
│ 1.33E-15 │
│ 4.44E-16 │
│ -2.22E-16 │
└ ┘
```

The function and the roots are illustrated in the figure below.

![All roots in an interval](data/figures/algo_root_finding_chebyshev.svg)

**References**

1. Boyd JP (2002) Computing zeros on a real interval through Chebyshev expansion
and polynomial rootfinding, SIAM Journal of Numerical Analysis, 40(5):1666-1682
2. Boyd JP (2013) Finding the zeros of a univariate equation: proxy rootfinders,
Chebyshev interpolation, and the companion matrix, SIAM Journal of Numerical
Analysis, 55(2):375-396.
3. Boyd JP (2014) Solving Transcendental Equations: The Chebyshev Polynomial Proxy
and Other Numerical Rootfinders, Perturbation Series, and Oracles, SIAM, pp460



### Computing the pseudo-inverse matrix

Expand Down Expand Up @@ -708,6 +811,13 @@ Run the benchmarks with:
bash ./zscripts/benchmark.bash
```

### Chebyshev polynomial evaluation

Comparison of the performances of `InterpChebyshev::eval` implementing the Clenshaw algorithm and `InterpChebyshev::eval_using_trig` using the trigonometric functions.

![Chebyshev evaluation (small)](data/figures/bench_chebyshev_eval_small.svg)

![Chebyshev evaluation (large)](data/figures/bench_chebyshev_eval_large.svg)


### Jacobi Rotation versus LAPACK DSYEV
Expand Down
30 changes: 30 additions & 0 deletions russell_lab/benches/algo_chebyshev.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
use criterion::BenchmarkId;
use criterion::Criterion;
use criterion::Throughput;
use criterion::{criterion_group, criterion_main};
use russell_lab::*;

fn bench_chebyshev_eval(c: &mut Criterion) {
let f = |x: f64, _: &mut NoArgs| Ok(f64::cos(16.0 * (x + 0.2)) * (1.0 + x) * f64::exp(x * x) / (1.0 + 9.0 * x * x));
let (xa, xb) = (-1.0, 1.0);
let args = &mut 0;
let nns = [1, 5, 10, 50, 100, 150, 200, 500, 1000, 1500, 2000];
let mut group = c.benchmark_group("chebyshev_eval");
for nn in &nns {
group.throughput(Throughput::Elements(*nn as u64));
group.bench_with_input(BenchmarkId::new("clenshaw", nn), nn, |b, &nn| {
let mut interp = InterpChebyshev::new(nn, xa, xb).unwrap();
interp.set_function(nn, args, f).unwrap();
b.iter(|| interp.eval((xa + xb) / 2.0).unwrap());
});
group.bench_with_input(BenchmarkId::new("trigonometric", nn), nn, |b, &nn| {
let mut interp = InterpChebyshev::new(nn, xa, xb).unwrap();
interp.set_function(nn, args, f).unwrap();
b.iter(|| interp.eval_using_trig((xa + xb) / 2.0).unwrap());
});
}
group.finish();
}

criterion_group!(benches, bench_chebyshev_eval);
criterion_main!(benches);
Loading

0 comments on commit 1a149ba

Please sign in to comment.