Skip to content

csehong/SSPP-DAN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

45 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SSPP-DAN-TensorFlow

Tensorflow implementation of SSPP-DAN: Deep Domain Adaptation Network for Face Recognition with Single Sample Per Person

Alt text

Prerequisites

We recommend the following instuctions.

  • Pull docker image (docker pull tensorflow/tensorflow:1.12.0-gpu-py3)
  • In the docker container apt-get update pip install scikit-image apt-get install -y libsm6 libxext6 libxrender-dev pip install opencv-python

Usage

First, download the dataset or the pickle files that we already generated. After all pickle files are download, move them into the 'SSPP-DAN/data/eklfh_pkl' folder.

Directory Tree

|-- DAN.py
|-- README.md
|-- data
|   |-- EK-LFH
|   |-- SCface
|   |-- __init__.py
|   |-- data_manager.py
|   |-- eklfh_pkl
|   |   |-- eklfh_s1_tgt_test.pkl
|   |   |-- eklfh_s1_tgt_train.pkl
|   |   |-- eklfh_s2_tgt_test.pkl
|   |   |-- eklfh_s2_tgt_train.pkl
|   |   |-- eklfh_src_train_ori.pkl
|   |   |-- eklfh_src_train_ori_3D.pkl
|   |   |-- eklfh_src_train_ori_3D_semi.pkl
|   |   |-- eklfh_src_train_ori_semi.pkl
|   |-- pkl_generate_eklfh.py
|   |-- pkl_generate_scface.py
|-- pretrained
|   |-- VGG_Face.py
|   |-- __init__.py
|   |-- get_vggface.sh
|-- test_model.py
|-- train_model.py
|-- util
    |-- Logger.py
    |-- OPTS.py
    |-- PyMatData.py
    |-- __init__.py
    |-- flip_gradient.py
    |-- img_proc.py

Then run get_vggface.sh in the SSPP-DAN/pretrained folder to use the pre-trained VGG-Face model.

To train a model with downloaded dataset:

$ python train_model.py --dataset='eklfh_s1' --exp_mode='dom_3D' 

To test with an existing model:

$ python test_model.py --dataset='eklfh_s1' --exp_mode='dom_3D'  --summaries_dir 'exp_eklfh_s1/tuning/exp_2_dom__batch_64__steps_10000__lr_2e-05__embfc7__dr_0.3__ft_fc7' 

Results

Facial feature space (left) and its embedding space after applying DA (right). The subscript “s” and “t” in the legend refer to the source and target domains, respectively.

Alt text

Author

Sungeun Hong e: [email protected] w: www.csehong.com

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published