Skip to content

Commit

Permalink
Add training code with DagNN
Browse files Browse the repository at this point in the history
  • Loading branch information
cszn authored Jan 12, 2018
1 parent 52faf88 commit 4a4b5b8
Show file tree
Hide file tree
Showing 26 changed files with 1,565 additions and 0 deletions.
120 changes: 120 additions & 0 deletions TrainingCodes/DnCNN_TrainingCodes_DagNN_v1.1/Demo_Test_DnCNN_DAG.m
Original file line number Diff line number Diff line change
@@ -0,0 +1,120 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% @article{zhang2017beyond,
% title={Beyond a {Gaussian} denoiser: Residual learning of deep {CNN} for image denoising},
% author={Zhang, Kai and Zuo, Wangmeng and Chen, Yunjin and Meng, Deyu and Zhang, Lei},
% journal={IEEE Transactions on Image Processing},
% year={2017},
% volume={26},
% number={7},
% pages={3142-3155},
% }

% by Kai Zhang (1/2018)
% [email protected]
% https://github.com/cszn
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% clear; clc;

%% testing set
addpath(fullfile('utilities'));

folderModel = 'model';
folderTest = 'testsets';
folderResult= 'results';
imageSets = {'BSD68','Set12'}; % testing datasets
setTestCur = imageSets{2}; % current testing dataset


showresult = 1;
gpu = 1;


noiseSigma = 25;

% load model
epoch = 50;

modelName = 'DnCNN';

% case one: for the model in 'data/model'
%load(fullfile('data',folderModel,[modelName,'-epoch-',num2str(epoch),'.mat']));

% case two: for the model in 'utilities'
load(fullfile('utilities',[modelName,'-epoch-',num2str(epoch),'.mat']));




net = dagnn.DagNN.loadobj(net) ;

net.removeLayer('loss') ;
out1 = net.getVarIndex('prediction') ;
net.vars(net.getVarIndex('prediction')).precious = 1 ;

net.mode = 'test';

if gpu
net.move('gpu');
end

% read images
ext = {'*.jpg','*.png','*.bmp'};
filePaths = [];
for i = 1 : length(ext)
filePaths = cat(1,filePaths, dir(fullfile(folderTest,setTestCur,ext{i})));
end

folderResultCur = fullfile(folderResult, [setTestCur,'_',int2str(noiseSigma)]);
if ~isdir(folderResultCur)
mkdir(folderResultCur)
end


% PSNR and SSIM
PSNRs = zeros(1,length(filePaths));
SSIMs = zeros(1,length(filePaths));


for i = 1 : length(filePaths)

% read image
label = imread(fullfile(folderTest,setTestCur,filePaths(i).name));
[~,nameCur,extCur] = fileparts(filePaths(i).name);
[w,h,c]=size(label);
if c==3
label = rgb2gray(label);
end

% add additive Gaussian noise
randn('seed',0);
noise = noiseSigma/255.*randn(size(label));
input = im2single(label) + single(noise);

if gpu
input = gpuArray(input);
end
net.eval({'input', input}) ;
% output (single)
output = gather(squeeze(gather(net.vars(out1).value)));


% calculate PSNR and SSIM
[PSNRCur, SSIMCur] = Cal_PSNRSSIM(label,im2uint8(output),0,0);
if showresult
imshow(cat(2,im2uint8(input),im2uint8(label),im2uint8(output)));
title([filePaths(i).name,' ',num2str(PSNRCur,'%2.2f'),'dB',' ',num2str(SSIMCur,'%2.4f')])
imwrite(im2uint8(output), fullfile(folderResultCur, [nameCur, '_' int2str(noiseSigma),'_PSNR_',num2str(PSNRCur*100,'%4.0f'), extCur] ));
drawnow;
% pause()
end
PSNRs(i) = PSNRCur;
SSIMs(i) = SSIMCur;
end


disp([mean(PSNRs),mean(SSIMs)]);




Original file line number Diff line number Diff line change
@@ -0,0 +1,61 @@

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% @article{zhang2017beyond,
% title={Beyond a {Gaussian} denoiser: Residual learning of deep {CNN} for image denoising},
% author={Zhang, Kai and Zuo, Wangmeng and Chen, Yunjin and Meng, Deyu and Zhang, Lei},
% journal={IEEE Transactions on Image Processing},
% year={2017},
% volume={26},
% number={7},
% pages={3142-3155},
% }

% by Kai Zhang (1/2018)
% [email protected]
% https://github.com/cszn
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% The training data is generated by '[imdb] = generatepatches;' in line 126 of 'DnCNN_train_dag.m'.

rng('default')

addpath('utilities');
%-------------------------------------------------------------------------
% Configuration
%-------------------------------------------------------------------------
opts.modelName = 'DnCNN'; % model name
opts.learningRate = [logspace(-3,-3,22) logspace(-4,-4,105)];% you can change the learning rate
opts.batchSize = 128; %
opts.gpus = [1];
opts.numSubBatches = 2;

% solver
opts.solver = 'Adam'; % global
opts.derOutputs = {'objective',1} ;

opts.backPropDepth = Inf;
%-------------------------------------------------------------------------
% Initialize model
%-------------------------------------------------------------------------

net = feval([opts.modelName,'_Init']);

%-------------------------------------------------------------------------
% Train
%-------------------------------------------------------------------------

[net, info] = DnCNN_train_dag(net, ...
'learningRate',opts.learningRate, ...
'derOutputs',opts.derOutputs, ...
'numSubBatches',opts.numSubBatches, ...
'backPropDepth',opts.backPropDepth, ...
'solver',opts.solver, ...
'batchSize', opts.batchSize, ...
'modelname', opts.modelName, ...
'gpus',opts.gpus) ;






213 changes: 213 additions & 0 deletions TrainingCodes/DnCNN_TrainingCodes_DagNN_v1.1/DnCNN_Init.m
Original file line number Diff line number Diff line change
@@ -0,0 +1,213 @@
function net = DnCNN_Init()

% by Kai Zhang (1/2018)
% [email protected]
% https://github.com/cszn

% Create DAGNN object
net = dagnn.DagNN();

% conv + relu
blockNum = 1;
inVar = 'input';
channel= 1; % grayscale image
dims = [3,3,channel,64];
pad = [1,1];
stride = [1,1];
lr = [1,1];
[net, inVar, blockNum] = addConv(net, blockNum, inVar, dims, pad, stride, lr);
[net, inVar, blockNum] = addReLU(net, blockNum, inVar);

for i = 1:15
% conv + bn + relu
dims = [3,3,64,64];
pad = [1,1];
stride = [1,1];
lr = [1,0];
[net, inVar, blockNum] = addConv(net, blockNum, inVar, dims, pad, stride, lr);
n_ch = dims(4);
[net, inVar, blockNum] = addBnorm(net, blockNum, inVar, n_ch);
[net, inVar, blockNum] = addReLU(net, blockNum, inVar);
end

% conv
dims = [3,3,64,channel];
pad = [1,1];
stride = [1,1];
lr = [1,0]; % or [1,1], it does not influence the results
[net, inVar, blockNum] = addConv(net, blockNum, inVar, dims, pad, stride, lr);

% sum
inVar = {inVar,'input'};
[net, inVar, blockNum] = addSum(net, blockNum, inVar);

outputName = 'prediction';
net.renameVar(inVar,outputName)

% loss
net.addLayer('loss', dagnn.Loss('loss','L2'), {'prediction','label'}, {'objective'},{});
net.vars(net.getVarIndex('prediction')).precious = 1;


end




% Add a Concat layer
function [net, inVar, blockNum] = addConcat(net, blockNum, inVar)

outVar = sprintf('concat%d', blockNum);
layerCur = sprintf('concat%d', blockNum);

block = dagnn.Concat('dim',3);
net.addLayer(layerCur, block, inVar, {outVar},{});

inVar = outVar;
blockNum = blockNum + 1;
end


% Add a loss layer
function [net, inVar, blockNum] = addLoss(net, blockNum, inVar)

outVar = 'objective';
layerCur = sprintf('loss%d', blockNum);

block = dagnn.Loss('loss','L2');
net.addLayer(layerCur, block, inVar, {outVar},{});

inVar = outVar;
blockNum = blockNum + 1;
end


% Add a sum layer
function [net, inVar, blockNum] = addSum(net, blockNum, inVar)

outVar = sprintf('sum%d', blockNum);
layerCur = sprintf('sum%d', blockNum);

block = dagnn.Sum();
net.addLayer(layerCur, block, inVar, {outVar},{});

inVar = outVar;
blockNum = blockNum + 1;
end


% Add a relu layer
function [net, inVar, blockNum] = addReLU(net, blockNum, inVar)

outVar = sprintf('relu%d', blockNum);
layerCur = sprintf('relu%d', blockNum);

block = dagnn.ReLU('leak',0);
net.addLayer(layerCur, block, {inVar}, {outVar},{});

inVar = outVar;
blockNum = blockNum + 1;
end


% Add a bnorm layer
function [net, inVar, blockNum] = addBnorm(net, blockNum, inVar, n_ch)

trainMethod = 'adam';
outVar = sprintf('bnorm%d', blockNum);
layerCur = sprintf('bnorm%d', blockNum);

params={[layerCur '_g'], [layerCur '_b'], [layerCur '_m']};
net.addLayer(layerCur, dagnn.BatchNorm('numChannels', n_ch), {inVar}, {outVar},params) ;

pidx = net.getParamIndex({[layerCur '_g'], [layerCur '_b'], [layerCur '_m']});
b_min = 0.025;
net.params(pidx(1)).value = clipping(sqrt(2/(9*n_ch))*randn(n_ch,1,'single'),b_min);
net.params(pidx(1)).learningRate= 1;
net.params(pidx(1)).weightDecay = 0;
net.params(pidx(1)).trainMethod = trainMethod;

net.params(pidx(2)).value = zeros(n_ch, 1, 'single');
net.params(pidx(2)).learningRate= 1;
net.params(pidx(2)).weightDecay = 0;
net.params(pidx(2)).trainMethod = trainMethod;

net.params(pidx(3)).value = [zeros(n_ch,1,'single'), 0.01*ones(n_ch,1,'single')];
net.params(pidx(3)).learningRate= 1;
net.params(pidx(3)).weightDecay = 0;
net.params(pidx(3)).trainMethod = 'average';

inVar = outVar;
blockNum = blockNum + 1;
end


% add a ConvTranspose layer
function [net, inVar, blockNum] = addConvt(net, blockNum, inVar, dims, crop, upsample, lr)
opts.cudnnWorkspaceLimit = 1024*1024*1024*2; % 2GB
convOpts = {'CudnnWorkspaceLimit', opts.cudnnWorkspaceLimit} ;
trainMethod = 'adam';

outVar = sprintf('convt%d', blockNum);

layerCur = sprintf('convt%d', blockNum);

convBlock = dagnn.ConvTranspose('size', dims, 'crop', crop,'upsample', upsample, ...
'hasBias', true, 'opts', convOpts);

net.addLayer(layerCur, convBlock, {inVar}, {outVar},{[layerCur '_f'], [layerCur '_b']});

f = net.getParamIndex([layerCur '_f']) ;
sc = sqrt(2/(dims(1)*dims(2)*dims(4))) ; %improved Xavier
net.params(f).value = sc*randn(dims, 'single');
net.params(f).learningRate = lr(1);
net.params(f).weightDecay = 1;
net.params(f).trainMethod = trainMethod;

f = net.getParamIndex([layerCur '_b']) ;
net.params(f).value = zeros(dims(3), 1, 'single');
net.params(f).learningRate = lr(2);
net.params(f).weightDecay = 1;
net.params(f).trainMethod = trainMethod;

inVar = outVar;
blockNum = blockNum + 1;
end


% add a Conv layer
function [net, inVar, blockNum] = addConv(net, blockNum, inVar, dims, pad, stride, lr)
opts.cudnnWorkspaceLimit = 1024*1024*1024*2; % 2GB
convOpts = {'CudnnWorkspaceLimit', opts.cudnnWorkspaceLimit} ;
trainMethod = 'adam';

outVar = sprintf('conv%d', blockNum);
layerCur = sprintf('conv%d', blockNum);

convBlock = dagnn.Conv('size', dims, 'pad', pad,'stride', stride, ...
'hasBias', true, 'opts', convOpts);

net.addLayer(layerCur, convBlock, {inVar}, {outVar},{[layerCur '_f'], [layerCur '_b']});

f = net.getParamIndex([layerCur '_f']) ;
sc = sqrt(2/(dims(1)*dims(2)*max(dims(3), dims(4)))) ; %improved Xavier
net.params(f).value = sc*randn(dims, 'single') ;
net.params(f).learningRate = lr(1);
net.params(f).weightDecay = 1;
net.params(f).trainMethod = trainMethod;

f = net.getParamIndex([layerCur '_b']) ;
net.params(f).value = zeros(dims(4), 1, 'single');
net.params(f).learningRate = lr(2);
net.params(f).weightDecay = 1;
net.params(f).trainMethod = trainMethod;

inVar = outVar;
blockNum = blockNum + 1;
end


function A = clipping(A,b)
A(A>=0&A<b) = b;
A(A<0&A>-b) = -b;
end
Loading

0 comments on commit 4a4b5b8

Please sign in to comment.