-
Notifications
You must be signed in to change notification settings - Fork 4
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
CVE-2023-2163 kernel lts-9.2 fix #19
Conversation
… taints jira VULN-6350 cve CVE-2023-2163 commit-author Daniel Borkmann <[email protected]> commit 71b547f Juan Jose et al reported an issue found via fuzzing where the verifier's pruning logic prematurely marks a program path as safe. Consider the following program: 0: (b7) r6 = 1024 1: (b7) r7 = 0 2: (b7) r8 = 0 3: (b7) r9 = -2147483648 4: (97) r6 %= 1025 5: (05) goto pc+0 6: (bd) if r6 <= r9 goto pc+2 7: (97) r6 %= 1 8: (b7) r9 = 0 9: (bd) if r6 <= r9 goto pc+1 10: (b7) r6 = 0 11: (b7) r0 = 0 12: (63) *(u32 *)(r10 -4) = r0 13: (18) r4 = 0xffff888103693400 // map_ptr(ks=4,vs=48) 15: (bf) r1 = r4 16: (bf) r2 = r10 17: (07) r2 += -4 18: (85) call bpf_map_lookup_elem#1 19: (55) if r0 != 0x0 goto pc+1 20: (95) exit 21: (77) r6 >>= 10 22: (27) r6 *= 8192 23: (bf) r1 = r0 24: (0f) r0 += r6 25: (79) r3 = *(u64 *)(r0 +0) 26: (7b) *(u64 *)(r1 +0) = r3 27: (95) exit The verifier treats this as safe, leading to oob read/write access due to an incorrect verifier conclusion: func#0 @0 0: R1=ctx(off=0,imm=0) R10=fp0 0: (b7) r6 = 1024 ; R6_w=1024 1: (b7) r7 = 0 ; R7_w=0 2: (b7) r8 = 0 ; R8_w=0 3: (b7) r9 = -2147483648 ; R9_w=-2147483648 4: (97) r6 %= 1025 ; R6_w=scalar() 5: (05) goto pc+0 6: (bd) if r6 <= r9 goto pc+2 ; R6_w=scalar(umin=18446744071562067969,var_off=(0xffffffff00000000; 0xffffffff)) R9_w=-2147483648 7: (97) r6 %= 1 ; R6_w=scalar() 8: (b7) r9 = 0 ; R9=0 9: (bd) if r6 <= r9 goto pc+1 ; R6=scalar(umin=1) R9=0 10: (b7) r6 = 0 ; R6_w=0 11: (b7) r0 = 0 ; R0_w=0 12: (63) *(u32 *)(r10 -4) = r0 last_idx 12 first_idx 9 regs=1 stack=0 before 11: (b7) r0 = 0 13: R0_w=0 R10=fp0 fp-8=0000???? 13: (18) r4 = 0xffff8ad3886c2a00 ; R4_w=map_ptr(off=0,ks=4,vs=48,imm=0) 15: (bf) r1 = r4 ; R1_w=map_ptr(off=0,ks=4,vs=48,imm=0) R4_w=map_ptr(off=0,ks=4,vs=48,imm=0) 16: (bf) r2 = r10 ; R2_w=fp0 R10=fp0 17: (07) r2 += -4 ; R2_w=fp-4 18: (85) call bpf_map_lookup_elem#1 ; R0=map_value_or_null(id=1,off=0,ks=4,vs=48,imm=0) 19: (55) if r0 != 0x0 goto pc+1 ; R0=0 20: (95) exit from 19 to 21: R0=map_value(off=0,ks=4,vs=48,imm=0) R6=0 R7=0 R8=0 R9=0 R10=fp0 fp-8=mmmm???? 21: (77) r6 >>= 10 ; R6_w=0 22: (27) r6 *= 8192 ; R6_w=0 23: (bf) r1 = r0 ; R0=map_value(off=0,ks=4,vs=48,imm=0) R1_w=map_value(off=0,ks=4,vs=48,imm=0) 24: (0f) r0 += r6 last_idx 24 first_idx 19 regs=40 stack=0 before 23: (bf) r1 = r0 regs=40 stack=0 before 22: (27) r6 *= 8192 regs=40 stack=0 before 21: (77) r6 >>= 10 regs=40 stack=0 before 19: (55) if r0 != 0x0 goto pc+1 parent didn't have regs=40 stack=0 marks: R0_rw=map_value_or_null(id=1,off=0,ks=4,vs=48,imm=0) R6_rw=P0 R7=0 R8=0 R9=0 R10=fp0 fp-8=mmmm???? last_idx 18 first_idx 9 regs=40 stack=0 before 18: (85) call bpf_map_lookup_elem#1 regs=40 stack=0 before 17: (07) r2 += -4 regs=40 stack=0 before 16: (bf) r2 = r10 regs=40 stack=0 before 15: (bf) r1 = r4 regs=40 stack=0 before 13: (18) r4 = 0xffff8ad3886c2a00 regs=40 stack=0 before 12: (63) *(u32 *)(r10 -4) = r0 regs=40 stack=0 before 11: (b7) r0 = 0 regs=40 stack=0 before 10: (b7) r6 = 0 25: (79) r3 = *(u64 *)(r0 +0) ; R0_w=map_value(off=0,ks=4,vs=48,imm=0) R3_w=scalar() 26: (7b) *(u64 *)(r1 +0) = r3 ; R1_w=map_value(off=0,ks=4,vs=48,imm=0) R3_w=scalar() 27: (95) exit from 9 to 11: R1=ctx(off=0,imm=0) R6=0 R7=0 R8=0 R9=0 R10=fp0 11: (b7) r0 = 0 ; R0_w=0 12: (63) *(u32 *)(r10 -4) = r0 last_idx 12 first_idx 11 regs=1 stack=0 before 11: (b7) r0 = 0 13: R0_w=0 R10=fp0 fp-8=0000???? 13: (18) r4 = 0xffff8ad3886c2a00 ; R4_w=map_ptr(off=0,ks=4,vs=48,imm=0) 15: (bf) r1 = r4 ; R1_w=map_ptr(off=0,ks=4,vs=48,imm=0) R4_w=map_ptr(off=0,ks=4,vs=48,imm=0) 16: (bf) r2 = r10 ; R2_w=fp0 R10=fp0 17: (07) r2 += -4 ; R2_w=fp-4 18: (85) call bpf_map_lookup_elem#1 frame 0: propagating r6 last_idx 19 first_idx 11 regs=40 stack=0 before 18: (85) call bpf_map_lookup_elem#1 regs=40 stack=0 before 17: (07) r2 += -4 regs=40 stack=0 before 16: (bf) r2 = r10 regs=40 stack=0 before 15: (bf) r1 = r4 regs=40 stack=0 before 13: (18) r4 = 0xffff8ad3886c2a00 regs=40 stack=0 before 12: (63) *(u32 *)(r10 -4) = r0 regs=40 stack=0 before 11: (b7) r0 = 0 parent didn't have regs=40 stack=0 marks: R1=ctx(off=0,imm=0) R6_r=P0 R7=0 R8=0 R9=0 R10=fp0 last_idx 9 first_idx 9 regs=40 stack=0 before 9: (bd) if r6 <= r9 goto pc+1 parent didn't have regs=40 stack=0 marks: R1=ctx(off=0,imm=0) R6_rw=Pscalar() R7_w=0 R8_w=0 R9_rw=0 R10=fp0 last_idx 8 first_idx 0 regs=40 stack=0 before 8: (b7) r9 = 0 regs=40 stack=0 before 7: (97) r6 %= 1 regs=40 stack=0 before 6: (bd) if r6 <= r9 goto pc+2 regs=40 stack=0 before 5: (05) goto pc+0 regs=40 stack=0 before 4: (97) r6 %= 1025 regs=40 stack=0 before 3: (b7) r9 = -2147483648 regs=40 stack=0 before 2: (b7) r8 = 0 regs=40 stack=0 before 1: (b7) r7 = 0 regs=40 stack=0 before 0: (b7) r6 = 1024 19: safe frame 0: propagating r6 last_idx 9 first_idx 0 regs=40 stack=0 before 6: (bd) if r6 <= r9 goto pc+2 regs=40 stack=0 before 5: (05) goto pc+0 regs=40 stack=0 before 4: (97) r6 %= 1025 regs=40 stack=0 before 3: (b7) r9 = -2147483648 regs=40 stack=0 before 2: (b7) r8 = 0 regs=40 stack=0 before 1: (b7) r7 = 0 regs=40 stack=0 before 0: (b7) r6 = 1024 from 6 to 9: safe verification time 110 usec stack depth 4 processed 36 insns (limit 1000000) max_states_per_insn 0 total_states 3 peak_states 3 mark_read 2 The verifier considers this program as safe by mistakenly pruning unsafe code paths. In the above func#0, code lines 0-10 are of interest. In line 0-3 registers r6 to r9 are initialized with known scalar values. In line 4 the register r6 is reset to an unknown scalar given the verifier does not track modulo operations. Due to this, the verifier can also not determine precisely which branches in line 6 and 9 are taken, therefore it needs to explore them both. As can be seen, the verifier starts with exploring the false/fall-through paths first. The 'from 19 to 21' path has both r6=0 and r9=0 and the pointer arithmetic on r0 += r6 is therefore considered safe. Given the arithmetic, r6 is correctly marked for precision tracking where backtracking kicks in where it walks back the current path all the way where r6 was set to 0 in the fall-through branch. Next, the pruning logics pops the path 'from 9 to 11' from the stack. Also here, the state of the registers is the same, that is, r6=0 and r9=0, so that at line 19 the path can be pruned as it is considered safe. It is interesting to note that the conditional in line 9 turned r6 into a more precise state, that is, in the fall-through path at the beginning of line 10, it is R6=scalar(umin=1), and in the branch-taken path (which is analyzed here) at the beginning of line 11, r6 turned into a known const r6=0 as r9=0 prior to that and therefore (unsigned) r6 <= 0 concludes that r6 must be 0 (**): [...] ; R6_w=scalar() 9: (bd) if r6 <= r9 goto pc+1 ; R6=scalar(umin=1) R9=0 [...] from 9 to 11: R1=ctx(off=0,imm=0) R6=0 R7=0 R8=0 R9=0 R10=fp0 [...] The next path is 'from 6 to 9'. The verifier considers the old and current state equivalent, and therefore prunes the search incorrectly. Looking into the two states which are being compared by the pruning logic at line 9, the old state consists of R6_rwD=Pscalar() R9_rwD=0 R10=fp0 and the new state consists of R1=ctx(off=0,imm=0) R6_w=scalar(umax=18446744071562067968) R7_w=0 R8_w=0 R9_w=-2147483648 R10=fp0. While r6 had the reg->precise flag correctly set in the old state, r9 did not. Both r6'es are considered as equivalent given the old one is a superset of the current, more precise one, however, r9's actual values (0 vs 0x80000000) mismatch. Given the old r9 did not have reg->precise flag set, the verifier does not consider the register as contributing to the precision state of r6, and therefore it considered both r9 states as equivalent. However, for this specific pruned path (which is also the actual path taken at runtime), register r6 will be 0x400 and r9 0x80000000 when reaching line 21, thus oob-accessing the map. The purpose of precision tracking is to initially mark registers (including spilled ones) as imprecise to help verifier's pruning logic finding equivalent states it can then prune if they don't contribute to the program's safety aspects. For example, if registers are used for pointer arithmetic or to pass constant length to a helper, then the verifier sets reg->precise flag and backtracks the BPF program instruction sequence and chain of verifier states to ensure that the given register or stack slot including their dependencies are marked as precisely tracked scalar. This also includes any other registers and slots that contribute to a tracked state of given registers/stack slot. This backtracking relies on recorded jmp_history and is able to traverse entire chain of parent states. This process ends only when all the necessary registers/slots and their transitive dependencies are marked as precise. The backtrack_insn() is called from the current instruction up to the first instruction, and its purpose is to compute a bitmask of registers and stack slots that need precision tracking in the parent's verifier state. For example, if a current instruction is r6 = r7, then r6 needs precision after this instruction and r7 needs precision before this instruction, that is, in the parent state. Hence for the latter r7 is marked and r6 unmarked. For the class of jmp/jmp32 instructions, backtrack_insn() today only looks at call and exit instructions and for all other conditionals the masks remain as-is. However, in the given situation register r6 has a dependency on r9 (as described above in **), so also that one needs to be marked for precision tracking. In other words, if an imprecise register influences a precise one, then the imprecise register should also be marked precise. Meaning, in the parent state both dest and src register need to be tracked for precision and therefore the marking must be more conservative by setting reg->precise flag for both. The precision propagation needs to cover both for the conditional: if the src reg was marked but not the dst reg and vice versa. After the fix the program is correctly rejected: func#0 @0 0: R1=ctx(off=0,imm=0) R10=fp0 0: (b7) r6 = 1024 ; R6_w=1024 1: (b7) r7 = 0 ; R7_w=0 2: (b7) r8 = 0 ; R8_w=0 3: (b7) r9 = -2147483648 ; R9_w=-2147483648 4: (97) r6 %= 1025 ; R6_w=scalar() 5: (05) goto pc+0 6: (bd) if r6 <= r9 goto pc+2 ; R6_w=scalar(umin=18446744071562067969,var_off=(0xffffffff80000000; 0x7fffffff),u32_min=-2147483648) R9_w=-2147483648 7: (97) r6 %= 1 ; R6_w=scalar() 8: (b7) r9 = 0 ; R9=0 9: (bd) if r6 <= r9 goto pc+1 ; R6=scalar(umin=1) R9=0 10: (b7) r6 = 0 ; R6_w=0 11: (b7) r0 = 0 ; R0_w=0 12: (63) *(u32 *)(r10 -4) = r0 last_idx 12 first_idx 9 regs=1 stack=0 before 11: (b7) r0 = 0 13: R0_w=0 R10=fp0 fp-8=0000???? 13: (18) r4 = 0xffff9290dc5bfe00 ; R4_w=map_ptr(off=0,ks=4,vs=48,imm=0) 15: (bf) r1 = r4 ; R1_w=map_ptr(off=0,ks=4,vs=48,imm=0) R4_w=map_ptr(off=0,ks=4,vs=48,imm=0) 16: (bf) r2 = r10 ; R2_w=fp0 R10=fp0 17: (07) r2 += -4 ; R2_w=fp-4 18: (85) call bpf_map_lookup_elem#1 ; R0=map_value_or_null(id=1,off=0,ks=4,vs=48,imm=0) 19: (55) if r0 != 0x0 goto pc+1 ; R0=0 20: (95) exit from 19 to 21: R0=map_value(off=0,ks=4,vs=48,imm=0) R6=0 R7=0 R8=0 R9=0 R10=fp0 fp-8=mmmm???? 21: (77) r6 >>= 10 ; R6_w=0 22: (27) r6 *= 8192 ; R6_w=0 23: (bf) r1 = r0 ; R0=map_value(off=0,ks=4,vs=48,imm=0) R1_w=map_value(off=0,ks=4,vs=48,imm=0) 24: (0f) r0 += r6 last_idx 24 first_idx 19 regs=40 stack=0 before 23: (bf) r1 = r0 regs=40 stack=0 before 22: (27) r6 *= 8192 regs=40 stack=0 before 21: (77) r6 >>= 10 regs=40 stack=0 before 19: (55) if r0 != 0x0 goto pc+1 parent didn't have regs=40 stack=0 marks: R0_rw=map_value_or_null(id=1,off=0,ks=4,vs=48,imm=0) R6_rw=P0 R7=0 R8=0 R9=0 R10=fp0 fp-8=mmmm???? last_idx 18 first_idx 9 regs=40 stack=0 before 18: (85) call bpf_map_lookup_elem#1 regs=40 stack=0 before 17: (07) r2 += -4 regs=40 stack=0 before 16: (bf) r2 = r10 regs=40 stack=0 before 15: (bf) r1 = r4 regs=40 stack=0 before 13: (18) r4 = 0xffff9290dc5bfe00 regs=40 stack=0 before 12: (63) *(u32 *)(r10 -4) = r0 regs=40 stack=0 before 11: (b7) r0 = 0 regs=40 stack=0 before 10: (b7) r6 = 0 25: (79) r3 = *(u64 *)(r0 +0) ; R0_w=map_value(off=0,ks=4,vs=48,imm=0) R3_w=scalar() 26: (7b) *(u64 *)(r1 +0) = r3 ; R1_w=map_value(off=0,ks=4,vs=48,imm=0) R3_w=scalar() 27: (95) exit from 9 to 11: R1=ctx(off=0,imm=0) R6=0 R7=0 R8=0 R9=0 R10=fp0 11: (b7) r0 = 0 ; R0_w=0 12: (63) *(u32 *)(r10 -4) = r0 last_idx 12 first_idx 11 regs=1 stack=0 before 11: (b7) r0 = 0 13: R0_w=0 R10=fp0 fp-8=0000???? 13: (18) r4 = 0xffff9290dc5bfe00 ; R4_w=map_ptr(off=0,ks=4,vs=48,imm=0) 15: (bf) r1 = r4 ; R1_w=map_ptr(off=0,ks=4,vs=48,imm=0) R4_w=map_ptr(off=0,ks=4,vs=48,imm=0) 16: (bf) r2 = r10 ; R2_w=fp0 R10=fp0 17: (07) r2 += -4 ; R2_w=fp-4 18: (85) call bpf_map_lookup_elem#1 frame 0: propagating r6 last_idx 19 first_idx 11 regs=40 stack=0 before 18: (85) call bpf_map_lookup_elem#1 regs=40 stack=0 before 17: (07) r2 += -4 regs=40 stack=0 before 16: (bf) r2 = r10 regs=40 stack=0 before 15: (bf) r1 = r4 regs=40 stack=0 before 13: (18) r4 = 0xffff9290dc5bfe00 regs=40 stack=0 before 12: (63) *(u32 *)(r10 -4) = r0 regs=40 stack=0 before 11: (b7) r0 = 0 parent didn't have regs=40 stack=0 marks: R1=ctx(off=0,imm=0) R6_r=P0 R7=0 R8=0 R9=0 R10=fp0 last_idx 9 first_idx 9 regs=40 stack=0 before 9: (bd) if r6 <= r9 goto pc+1 parent didn't have regs=240 stack=0 marks: R1=ctx(off=0,imm=0) R6_rw=Pscalar() R7_w=0 R8_w=0 R9_rw=P0 R10=fp0 last_idx 8 first_idx 0 regs=240 stack=0 before 8: (b7) r9 = 0 regs=40 stack=0 before 7: (97) r6 %= 1 regs=40 stack=0 before 6: (bd) if r6 <= r9 goto pc+2 regs=240 stack=0 before 5: (05) goto pc+0 regs=240 stack=0 before 4: (97) r6 %= 1025 regs=240 stack=0 before 3: (b7) r9 = -2147483648 regs=40 stack=0 before 2: (b7) r8 = 0 regs=40 stack=0 before 1: (b7) r7 = 0 regs=40 stack=0 before 0: (b7) r6 = 1024 19: safe from 6 to 9: R1=ctx(off=0,imm=0) R6_w=scalar(umax=18446744071562067968) R7_w=0 R8_w=0 R9_w=-2147483648 R10=fp0 9: (bd) if r6 <= r9 goto pc+1 last_idx 9 first_idx 0 regs=40 stack=0 before 6: (bd) if r6 <= r9 goto pc+2 regs=240 stack=0 before 5: (05) goto pc+0 regs=240 stack=0 before 4: (97) r6 %= 1025 regs=240 stack=0 before 3: (b7) r9 = -2147483648 regs=40 stack=0 before 2: (b7) r8 = 0 regs=40 stack=0 before 1: (b7) r7 = 0 regs=40 stack=0 before 0: (b7) r6 = 1024 last_idx 9 first_idx 0 regs=200 stack=0 before 6: (bd) if r6 <= r9 goto pc+2 regs=240 stack=0 before 5: (05) goto pc+0 regs=240 stack=0 before 4: (97) r6 %= 1025 regs=240 stack=0 before 3: (b7) r9 = -2147483648 regs=40 stack=0 before 2: (b7) r8 = 0 regs=40 stack=0 before 1: (b7) r7 = 0 regs=40 stack=0 before 0: (b7) r6 = 1024 11: R6=scalar(umax=18446744071562067968) R9=-2147483648 11: (b7) r0 = 0 ; R0_w=0 12: (63) *(u32 *)(r10 -4) = r0 last_idx 12 first_idx 11 regs=1 stack=0 before 11: (b7) r0 = 0 13: R0_w=0 R10=fp0 fp-8=0000???? 13: (18) r4 = 0xffff9290dc5bfe00 ; R4_w=map_ptr(off=0,ks=4,vs=48,imm=0) 15: (bf) r1 = r4 ; R1_w=map_ptr(off=0,ks=4,vs=48,imm=0) R4_w=map_ptr(off=0,ks=4,vs=48,imm=0) 16: (bf) r2 = r10 ; R2_w=fp0 R10=fp0 17: (07) r2 += -4 ; R2_w=fp-4 18: (85) call bpf_map_lookup_elem#1 ; R0_w=map_value_or_null(id=3,off=0,ks=4,vs=48,imm=0) 19: (55) if r0 != 0x0 goto pc+1 ; R0_w=0 20: (95) exit from 19 to 21: R0=map_value(off=0,ks=4,vs=48,imm=0) R6=scalar(umax=18446744071562067968) R7=0 R8=0 R9=-2147483648 R10=fp0 fp-8=mmmm???? 21: (77) r6 >>= 10 ; R6_w=scalar(umax=18014398507384832,var_off=(0x0; 0x3fffffffffffff)) 22: (27) r6 *= 8192 ; R6_w=scalar(smax=9223372036854767616,umax=18446744073709543424,var_off=(0x0; 0xffffffffffffe000),s32_max=2147475456,u32_max=-8192) 23: (bf) r1 = r0 ; R0=map_value(off=0,ks=4,vs=48,imm=0) R1_w=map_value(off=0,ks=4,vs=48,imm=0) 24: (0f) r0 += r6 last_idx 24 first_idx 21 regs=40 stack=0 before 23: (bf) r1 = r0 regs=40 stack=0 before 22: (27) r6 *= 8192 regs=40 stack=0 before 21: (77) r6 >>= 10 parent didn't have regs=40 stack=0 marks: R0_rw=map_value(off=0,ks=4,vs=48,imm=0) R6_r=Pscalar(umax=18446744071562067968) R7=0 R8=0 R9=-2147483648 R10=fp0 fp-8=mmmm???? last_idx 19 first_idx 11 regs=40 stack=0 before 19: (55) if r0 != 0x0 goto pc+1 regs=40 stack=0 before 18: (85) call bpf_map_lookup_elem#1 regs=40 stack=0 before 17: (07) r2 += -4 regs=40 stack=0 before 16: (bf) r2 = r10 regs=40 stack=0 before 15: (bf) r1 = r4 regs=40 stack=0 before 13: (18) r4 = 0xffff9290dc5bfe00 regs=40 stack=0 before 12: (63) *(u32 *)(r10 -4) = r0 regs=40 stack=0 before 11: (b7) r0 = 0 parent didn't have regs=40 stack=0 marks: R1=ctx(off=0,imm=0) R6_rw=Pscalar(umax=18446744071562067968) R7_w=0 R8_w=0 R9_w=-2147483648 R10=fp0 last_idx 9 first_idx 0 regs=40 stack=0 before 9: (bd) if r6 <= r9 goto pc+1 regs=240 stack=0 before 6: (bd) if r6 <= r9 goto pc+2 regs=240 stack=0 before 5: (05) goto pc+0 regs=240 stack=0 before 4: (97) r6 %= 1025 regs=240 stack=0 before 3: (b7) r9 = -2147483648 regs=40 stack=0 before 2: (b7) r8 = 0 regs=40 stack=0 before 1: (b7) r7 = 0 regs=40 stack=0 before 0: (b7) r6 = 1024 math between map_value pointer and register with unbounded min value is not allowed verification time 886 usec stack depth 4 processed 49 insns (limit 1000000) max_states_per_insn 1 total_states 5 peak_states 5 mark_read 2 Fixes: b5dc016 ("bpf: precise scalar_value tracking") Reported-by: Juan Jose Lopez Jaimez <[email protected]> Reported-by: Meador Inge <[email protected]> Reported-by: Simon Scannell <[email protected]> Reported-by: Nenad Stojanovski <[email protected]> Signed-off-by: Daniel Borkmann <[email protected]> Co-developed-by: Andrii Nakryiko <[email protected]> Signed-off-by: Andrii Nakryiko <[email protected]> Reviewed-by: John Fastabend <[email protected]> Reviewed-by: Juan Jose Lopez Jaimez <[email protected]> Reviewed-by: Meador Inge <[email protected]> Reviewed-by: Simon Scannell <[email protected]> (cherry picked from commit 71b547f) Signed-off-by: Greg Rose <[email protected]>
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
code looks good
Non-Blocking:
TBH I'm not sure why the bpf tests don't run from the root kernel directory like most, but probably some issue with the 9.2 kernel selftests that has since been fixed. I was able to get the kernel bpf selftests to run by changing to the bpf selftest directory and running the tests manually from there. The before and after bpf test logs are attached here, there is no difference.
I'd love for us to start a page on the wiki for known issues and work a rounds for manual testing since we require testing evidence and these are heavily modified kernels. We can collect that data internally first or we can just start adding it.
Agreed about the wiki! But I still don't know how to block quote. Sometime tomorrow morning after I've had coffee you can illustrate? It'd be very appreciated! |
jira LE-1907 Rebuild_History Non-Buildable kernel-rt-5.14.0-284.30.1.rt14.315.el9_2 commit-author Stefan Assmann <[email protected]> commit 4e264be When a system with E810 with existing VFs gets rebooted the following hang may be observed. Pid 1 is hung in iavf_remove(), part of a network driver: PID: 1 TASK: ffff965400e5a340 CPU: 24 COMMAND: "systemd-shutdow" #0 [ffffaad04005fa50] __schedule at ffffffff8b3239cb ctrliq#1 [ffffaad04005fae8] schedule at ffffffff8b323e2d ctrliq#2 [ffffaad04005fb00] schedule_hrtimeout_range_clock at ffffffff8b32cebc ctrliq#3 [ffffaad04005fb80] usleep_range_state at ffffffff8b32c930 ctrliq#4 [ffffaad04005fbb0] iavf_remove at ffffffffc12b9b4c [iavf] ctrliq#5 [ffffaad04005fbf0] pci_device_remove at ffffffff8add7513 ctrliq#6 [ffffaad04005fc10] device_release_driver_internal at ffffffff8af08baa ctrliq#7 [ffffaad04005fc40] pci_stop_bus_device at ffffffff8adcc5fc ctrliq#8 [ffffaad04005fc60] pci_stop_and_remove_bus_device at ffffffff8adcc81e ctrliq#9 [ffffaad04005fc70] pci_iov_remove_virtfn at ffffffff8adf9429 ctrliq#10 [ffffaad04005fca8] sriov_disable at ffffffff8adf98e4 ctrliq#11 [ffffaad04005fcc8] ice_free_vfs at ffffffffc04bb2c8 [ice] ctrliq#12 [ffffaad04005fd10] ice_remove at ffffffffc04778fe [ice] ctrliq#13 [ffffaad04005fd38] ice_shutdown at ffffffffc0477946 [ice] ctrliq#14 [ffffaad04005fd50] pci_device_shutdown at ffffffff8add58f1 ctrliq#15 [ffffaad04005fd70] device_shutdown at ffffffff8af05386 ctrliq#16 [ffffaad04005fd98] kernel_restart at ffffffff8a92a870 ctrliq#17 [ffffaad04005fda8] __do_sys_reboot at ffffffff8a92abd6 ctrliq#18 [ffffaad04005fee0] do_syscall_64 at ffffffff8b317159 ctrliq#19 [ffffaad04005ff08] __context_tracking_enter at ffffffff8b31b6fc ctrliq#20 [ffffaad04005ff18] syscall_exit_to_user_mode at ffffffff8b31b50d ctrliq#21 [ffffaad04005ff28] do_syscall_64 at ffffffff8b317169 ctrliq#22 [ffffaad04005ff50] entry_SYSCALL_64_after_hwframe at ffffffff8b40009b RIP: 00007f1baa5c13d7 RSP: 00007fffbcc55a98 RFLAGS: 00000202 RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f1baa5c13d7 RDX: 0000000001234567 RSI: 0000000028121969 RDI: 00000000fee1dead RBP: 00007fffbcc55ca0 R8: 0000000000000000 R9: 00007fffbcc54e90 R10: 00007fffbcc55050 R11: 0000000000000202 R12: 0000000000000005 R13: 0000000000000000 R14: 00007fffbcc55af0 R15: 0000000000000000 ORIG_RAX: 00000000000000a9 CS: 0033 SS: 002b During reboot all drivers PM shutdown callbacks are invoked. In iavf_shutdown() the adapter state is changed to __IAVF_REMOVE. In ice_shutdown() the call chain above is executed, which at some point calls iavf_remove(). However iavf_remove() expects the VF to be in one of the states __IAVF_RUNNING, __IAVF_DOWN or __IAVF_INIT_FAILED. If that's not the case it sleeps forever. So if iavf_shutdown() gets invoked before iavf_remove() the system will hang indefinitely because the adapter is already in state __IAVF_REMOVE. Fix this by returning from iavf_remove() if the state is __IAVF_REMOVE, as we already went through iavf_shutdown(). Fixes: 9745780 ("iavf: Add waiting so the port is initialized in remove") Fixes: a841733 ("iavf: Fix race condition between iavf_shutdown and iavf_remove") Reported-by: Marius Cornea <[email protected]> Signed-off-by: Stefan Assmann <[email protected]> Reviewed-by: Michal Kubiak <[email protected]> Tested-by: Rafal Romanowski <[email protected]> Signed-off-by: Tony Nguyen <[email protected]> (cherry picked from commit 4e264be) Signed-off-by: Jonathan Maple <[email protected]>
jira VULN-6350
cve CVE-2023-2163
The commit description is too long to practically fit into this PR description. See the attached original commit for the full commit description.
Builds and installs:
The standard kernel selftests - before and after logs show no problems.
kernel-selftests-before.log
kernel-selftests-after.log
During the kernel selftests I noticed that the bpf tests were not run and since this change hits the bpf verifier it is important that we get that code coverage. TBH I'm not sure why the bpf tests don't run from the root kernel directory like most, but probably some issue with the 9.2 kernel selftests that has since been fixed. I was able to get the kernel bpf selftests to run by changing to the bpf selftest directory and running the tests manually from there. The before and after bpf test logs are attached here, there is no difference.
bpf-selftest-before.log
bpf-selftest-after.log
An error occurs during both of the bpf before and after tests.
bpf-error.log
Since this issue exists previously we will not spend time debugging it due to limited resources and scope.
The kernel selftests run with lockdep and kmemleak showed no unusual results - lockdep always seems to introduce a few failures into the kernel selftests.
Uploading kernel-selftests-ldpon.log…
This fix is already introduced by our old friend Ronnie into fips 8 here: https://ciqinc.atlassian.net/browse/VULN-6349
It should be pretty safe.