Implemation of naive bayes classification
[email protected]
Naive Bayes classifier :
𝑪 = 𝒂𝒓𝒈𝒎𝒂𝒙 𝑷(𝒄|𝒅)
𝑪 = 𝒂𝒓𝒈𝒎𝒂𝒙( 𝑷(𝒅│𝒄)𝑷(𝒄) / 𝑷(𝒅) )
𝑪 = 𝒂𝒓𝒈𝒎𝒂𝒙 𝑷(𝒅│𝒄)𝑷(𝒄)
Num | Document(terms) | Class |
---|---|---|
1 | fun, couple, love, love | Comedy |
2 | fast, furious, shoot | Action |
3 | couple, fly, fast, fun, fun | Comedy |
4 | furious, shoot, shoot, fun | Action |
5 | fly, fast, shoot, love | Action |
6 | fast, furious, fun | ??? |
Document Words List = {fun(0), couple(1), love(2), fast(3), furious(4), shoot(5), fly(6)}
Class List = {Comedy(0), Action(1)}}
𝑪 = 𝒂𝒓𝒈𝒎𝒂𝒙 𝑷(𝒇𝒂𝒔𝒕, 𝒇𝒖𝒓𝒊𝒐𝒔,𝒇𝒖𝒏│𝒄)𝑷(𝒄)
𝑷(𝒇𝒂𝒔𝒕, 𝒇𝒖𝒓𝒊𝒐𝒔,𝒇𝒖𝒏│𝒄)𝑷(𝒄) = 𝑷(𝒇𝒂𝒔𝒕│𝒄)*𝑷(𝒇𝒖𝒓𝒊𝒐𝒖𝒔│𝒄)*𝑷(𝒇𝒖𝒏|𝒄)
𝑷(𝒄): 𝑷(𝒄𝒐𝒎𝒆𝒅𝒚) = 𝟑/𝟓, 𝑷(𝒂𝒄𝒕𝒊𝒐𝒏) = 𝟐/𝟓
𝑷(𝒙|𝒄) = (𝒄𝒐𝒖𝒏𝒕(𝒙, 𝒄)) / (Ʃ𝒄𝒐𝒖𝒏𝒕(𝑿𝒊, 𝒄))
Ʃ𝒄𝒐𝒖𝒏𝒕(𝑿𝒊, 𝒄𝒐𝒎𝒆𝒅𝒚) = 𝟗
Ʃ𝒄𝒐𝒖𝒏𝒕(𝑿𝒊, 𝒂𝒄𝒕𝒊𝒐𝒏) = 𝟏𝟏
𝒄𝒐𝒖𝒏𝒕(𝒇𝒂𝒔𝒕, 𝒄𝒐𝒎𝒆𝒅𝒚)=𝟏, 𝒄𝒐𝒖𝒏𝒕(𝒇𝒂𝒔𝒕, 𝒂𝒄𝒕𝒊𝒐𝒏)=𝟐
𝒄𝒐𝒖𝒏𝒕(𝒇𝒖𝒓𝒊𝒐𝒖𝒔, 𝒄𝒐𝒎𝒆𝒅𝒚)=𝟎, 𝒄𝒐𝒖𝒏𝒕(𝒇𝒖𝒓𝒊𝒐𝒖𝒔, 𝒂𝒄𝒕𝒊𝒐𝒏)=𝟐
𝒄𝒐𝒖𝒏𝒕(𝒇𝒖𝒏, 𝒄𝒐𝒎𝒆𝒅𝒚)=𝟑, 𝒄𝒐𝒖𝒏𝒕(𝒇𝒖𝒏, 𝒂𝒄𝒕𝒊𝒐𝒏)=𝟏
𝑷(𝒄𝒐𝒎𝒆𝒅𝒚│𝒇𝒂𝒔𝒕, 𝒇𝒖𝒓𝒊𝒐𝒖𝒔, 𝒇𝒖𝒏) = 𝑷(𝒇𝒂𝒔𝒕│𝒄𝒐𝒎𝒆𝒅𝒚)*𝑷(𝒇𝒖𝒓𝒊𝒐𝒖𝒔│𝒄𝒐𝒎𝒆𝒅𝒚)*𝑷(𝒇𝒖𝒏|𝒄𝒐𝒎𝒆𝒅𝒚)*𝑷(𝒄𝒐𝒎𝒆𝒅𝒚)
𝑷(𝒄𝒐𝒎𝒆𝒅𝒚|𝒇𝒂𝒔𝒕, 𝒇𝒖𝒓𝒊𝒐𝒖𝒔, 𝒇𝒖𝒏) = 𝟏/𝟗 * 𝟎/𝟗 * 𝟑/𝟗 * 𝟐/𝟓 = 𝟎
𝑷(𝒂𝒄𝒕𝒊𝒐𝒏│𝒇𝒂𝒔𝒕, 𝒇𝒖𝒓𝒊𝒐𝒖𝒔, 𝒇𝒖𝒏) = 𝑷(𝒇𝒂𝒔𝒕│𝒂𝒄𝒕𝒊𝒐𝒏)*𝑷(𝒇𝒖𝒓𝒊𝒐𝒖𝒔│𝒂𝒄𝒕𝒊𝒐𝒏)*𝑷(𝒇𝒖𝒏|𝒂𝒄𝒕𝒊𝒐𝒏)*𝑷(𝒂𝒄𝒕𝒊𝒐𝒏)
𝑷(𝒂𝒄𝒕𝒊𝒐𝒏|𝒇𝒂𝒔𝒕, 𝒇𝒖𝒓𝒊𝒐𝒖𝒔, 𝒇𝒖𝒏) = 𝟐/𝟏𝟏 * 𝟐/𝟏𝟏 * 𝟏/𝟏𝟏 * 𝟑/𝟓 = 𝟎.𝟎𝟎𝟏𝟖
After Smoothing
𝑷(𝒄𝒐𝒎𝒆𝒅𝒚|𝒇𝒂𝒔𝒕, 𝒇𝒖𝒓𝒊𝒐𝒖𝒔, 𝒇𝒖𝒏) = (𝟏+𝟏)/(𝟗+𝟕) * (𝟎+𝟏)/(𝟗+𝟕) * (𝟑+𝟏)/(𝟗+𝟕) * 𝟐/𝟓 = 𝟎.𝟎𝟎𝟎𝟕𝟖
𝑷(𝒂𝒄𝒕𝒊𝒐𝒏|𝒇𝒂𝒔𝒕, 𝒇𝒖𝒓𝒊𝒐𝒖𝒔, 𝒇𝒖𝒏) = (𝟐+𝟏)/(𝟏𝟏+𝟕) * (𝟐+𝟏)/(𝟏𝟏+𝟕) * (𝟏+𝟏)/(𝟏𝟏+𝟕) * 𝟑/𝟓 = 𝟎.𝟎𝟎𝟏𝟖
- usage : train
printf("----------------------EXAMPLE#1----------------------\n");
CNaiveBayesDocument * pNaiveBayes = new CNaiveBayesDocument();
pNaiveBayes->init(SIZE_OUTPUT, SIZE_WORDLIST, SIZE_RECORD, ppInputData, true);
pNaiveBayes->train();
pNaiveBayes->classfication(pTestData);
printf("-----------------------------------------------------\n\n");
Num | Outlook | Temperature | Humidity | Wind | Class |
---|---|---|---|---|---|
1 | Sunny | Hot | High | Weak | No |
2 | Sunny | Hot | High | Strong | No |
3 | Overcast | Hot | High | Weak | Yes |
4 | Rain | Mild | High | Weak | Yes |
5 | Rain | Cool | Normal | Weak | Yes |
6 | Rain | Cool | Normal | Strong | No |
7 | Overcast | Cool | Normal | Strong | Yes |
8 | Sunny | Mild | High | Weak | No |
9 | Sunny | Cool | Normal | Weak | Yes |
10 | Rain | Mild | Normal | Weak | Yes |
11 | Sunny | Mild | Normal | Strong | Yes |
12 | Overcast | Mild | High | Strong | Yes |
13 | Overcast | Hot | Normal | Weak | Yes |
14 | Rain | Mild | High | Strong | No |
15 | Sunny | Cool | High | Strong | ??? |
𝑷(𝒚𝒆𝒔)=𝟗/𝟏𝟒, 𝑷(𝒏𝒐)=𝟓/𝟏𝟒
𝑷(𝒘𝒊𝒏𝒅=𝒔𝒕𝒓𝒐𝒏𝒈|𝒚𝒆𝒔)=𝟑/𝟗, 𝑷(𝒘𝒊𝒏𝒅=𝒔𝒕𝒓𝒐𝒏𝒈|𝒏𝒐)=𝟑/𝟓
...
𝑷(𝒚)𝑷(𝒔𝒖𝒏│𝒚)𝑷(𝒄𝒐𝒐𝒍│𝒚)𝑷(𝒉𝒊𝒈𝒉│𝒚)𝑷(𝒔𝒕𝒓𝒐𝒏𝒈│𝒚) = 𝟎.𝟎𝟎𝟓
𝑷(𝒏)𝑷(𝒔𝒖𝒏│𝒏)𝑷(𝒄𝒐𝒐𝒍│𝒏)𝑷(𝒉𝒊𝒈𝒉│𝒏)𝑷(𝒔𝒕𝒓𝒐𝒏𝒈│𝒏) = 𝟎.𝟎𝟐𝟏
- usage : train
printf("----------------------EXAMPLE#2----------------------\n");
CNaiveBayesMultiFeature * pNaiveBayesMulti = new CNaiveBayesMultiFeature();
pNaiveBayesMulti->init(SIZE_OUTPUT, SIZE_RECORD, SIZE_FEATURE, pFeatWords, ppInputData, true);
pNaiveBayesMulti->train();
pNaiveBayesMulti->classfication(pTestData);
printf("-----------------------------------------------------\n\n");
Num | Height | Weight | Foot | Class |
---|---|---|---|---|
1 | 6 | 180 | 12 | Male |
2 | 5.92 | 190 | 11 | Male |
3 | 5.58 | 170 | 12 | Male |
4 | 5.92 | 165 | 10 | Male |
5 | 5 | 100 | 6 | Female |
6 | 5.5 | 150 | 8 | Female |
7 | 5.42 | 130 | 7 | Female |
8 | 5.75 | 150 | 9 | Female |
9 | 6 | 130 | 8 | ??? |
P(m) = 0.5, P(f) = 0.5
Gaussian distribution
Class | Feature | Mean | Var |
---|---|---|---|
Male | Height | 5.8550 | 0.0350 |
Male | Weight | 176.2500 | 122.9167 |
Male | Foot | 11.2500 | 0.9167 |
Female | Height | 5.4175 | 0.0972 |
Female | Weight | 132.5000 | 558.333 |
Female | Foot | 7.5000 | 1.6777 |
Log likelihood
𝑷(class)𝑷(hei│class)𝑷(wei│class)𝑷(foot│class) ~
log( 𝑷(class)𝑷(hei│class)𝑷(wei│class)𝑷(foot│class) ) =
log(𝑷(class)) + log(𝑷(hei│class)) + log(𝑷(wei│class)) + log(𝑷(foot│class))
- usage : train
printf("----------------------EXAMPLE#3----------------------\n");
CNaiveBayesMultiFeatureGaussian * pNaiveBayesMultiGauss = new CNaiveBayesMultiFeatureGaussian();
pNaiveBayesMultiGauss->init(SIZE_OUTPUT, SIZE_RECORD, SIZE_FEATURE, ppInputData);
pNaiveBayesMultiGauss->train();
pNaiveBayesMultiGauss->classfication(pTestData, false);
printf("-----------------------------------------------------\n\n");