forked from openvinotoolkit/nncf
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
8934a06
commit ceb9c4b
Showing
1 changed file
with
109 additions
and
0 deletions.
There are no files selected for viewing
109 changes: 109 additions & 0 deletions
109
nncf/experimental/torch_fx/quantization/default_quantization.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,109 @@ | ||
|
||
# Copyright (c) 2024 Intel Corporation | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
from typing import Dict, List | ||
|
||
from nncf.common.quantization.quantizer_propagation.structs import QuantizationTrait | ||
from nncf.torch.graph import operator_metatypes | ||
from nncf.torch.graph.operator_metatypes import OPERATORS_WITH_WEIGHTS_METATYPES | ||
from nncf.torch.graph.operator_metatypes import PTOperatorMetatype | ||
|
||
# If a metatype is not in this list, then it is considered to be QuantizationTrait.NON_QUANTIZABLE. | ||
|
||
DEFAULT_PT_QUANT_TRAIT_TO_OP_DICT: Dict[QuantizationTrait, List[PTOperatorMetatype]] = { | ||
QuantizationTrait.INPUTS_QUANTIZABLE: [ | ||
operator_metatypes.PTConv2dMetatype, | ||
operator_metatypes.PTModuleConv2dMetatype, | ||
operator_metatypes.PTConv3dMetatype, | ||
operator_metatypes.PTModuleConv3dMetatype, | ||
operator_metatypes.PTConvTranspose2dMetatype, | ||
operator_metatypes.PTModuleConvTranspose2dMetatype, | ||
operator_metatypes.PTConvTranspose3dMetatype, | ||
operator_metatypes.PTModuleConvTranspose3dMetatype, | ||
operator_metatypes.PTDepthwiseConv2dSubtype, | ||
operator_metatypes.PTDepthwiseConv3dSubtype, | ||
operator_metatypes.PTModuleDepthwiseConv2dSubtype, | ||
operator_metatypes.PTModuleDepthwiseConv3dSubtype, | ||
operator_metatypes.PTLinearMetatype, | ||
operator_metatypes.PTModuleLinearMetatype, | ||
operator_metatypes.PTLayerNormMetatype, | ||
operator_metatypes.PTModuleLayerNormMetatype, | ||
#operator_metatypes.PTAddMetatype, | ||
operator_metatypes.PTMulMetatype, | ||
operator_metatypes.PTDivMetatype, | ||
operator_metatypes.PTMatMulMetatype, | ||
operator_metatypes.PTMeanMetatype, | ||
operator_metatypes.PTRoundMetatype, | ||
operator_metatypes.PTPixelShuffleMetatype, | ||
operator_metatypes.PTBatchNormMetatype, | ||
operator_metatypes.PTModuleBatchNormMetatype, | ||
operator_metatypes.PTAvgPool2dMetatype, | ||
operator_metatypes.PTAvgPool3dMetatype, | ||
operator_metatypes.PTMaxPool1dMetatype, | ||
operator_metatypes.PTMaxPool2dMetatype, | ||
operator_metatypes.PTMaxPool3dMetatype, | ||
# 1. Single input activations except Relu and PRelu could not be | ||
# executed in INT8 precision by the OpenVINO runtime. | ||
# List of supported operations for INT8 execution: | ||
# https://docs.openvino.ai/2023.1/openvino_docs_OV_UG_lpt.html#input-model-requirements | ||
# 2. In case an activation from Torch is fused to | ||
# a specific OpenVINO operation in runtime, it is better to not quantize | ||
# this actictivation to keep specific operations fusing. | ||
# operator_metatypes.PTHardTanhMetatype, | ||
# operator_metatypes.PTHardSwishMetatype, | ||
# operator_metatypes.PTHardSigmoidMetatype, | ||
# operator_metatypes.PTTanhMetatype, | ||
# operator_metatypes.PTELUMetatype, | ||
# operator_metatypes.PTLeakyRELUMetatype, | ||
# operator_metatypes.PTGELUMetatype, | ||
# operator_metatypes.PTErfMetatype, | ||
# PTPRELUMetatype is not considered to be QUANTIZATION_AGNOSTIC, because: | ||
# 1. Runtime doesn't provide performance benefits by quantizing the stand-alone RELU's (ticket: 59548) | ||
# 2. It's frequently better for the end accuracy to have quantizers set up after the RELU | ||
# so that the input distribution to the quantizer is non-negative | ||
# and we can therefore have better quantization resolution while preserving the original dynamic range | ||
# operator_metatypes.PTPRELUMetatype, | ||
], | ||
QuantizationTrait.QUANTIZATION_AGNOSTIC: [ | ||
operator_metatypes.PTThresholdMetatype, | ||
operator_metatypes.PTDropoutMetatype, | ||
operator_metatypes.PTPadMetatype, | ||
operator_metatypes.PTMaxMetatype, | ||
operator_metatypes.PTMinMetatype, | ||
operator_metatypes.PTTransposeMetatype, | ||
operator_metatypes.PTGatherMetatype, | ||
operator_metatypes.PTScatterMetatype, | ||
operator_metatypes.PTReshapeMetatype, | ||
operator_metatypes.PTSqueezeMetatype, | ||
operator_metatypes.PTSplitMetatype, | ||
operator_metatypes.PTExpandMetatype, | ||
operator_metatypes.PTMaxUnpool1dMetatype, | ||
operator_metatypes.PTMaxUnpool2dMetatype, | ||
operator_metatypes.PTMaxUnpool3dMetatype, | ||
operator_metatypes.PTRepeatMetatype, | ||
operator_metatypes.PTNoopMetatype, | ||
# PTRELUMetatype is not considered to be QUANTIZATION_AGNOSTIC, because: | ||
# 1. Runtime doesn't provide performance benefits by quantizing the stand-alone RELU's (ticket: 59548) | ||
# 2. It's frequently better for the end accuracy to have quantizers set up after the RELU | ||
# so that the input distribution to the quantizer is non-negative | ||
# and we can therefore have better quantization resolution while preserving the original dynamic range | ||
], | ||
QuantizationTrait.CONCAT: [operator_metatypes.PTCatMetatype], | ||
QuantizationTrait.OUTPUT_QUANTIZATION_AS_WEIGHTS: [ | ||
operator_metatypes.PTEmbeddingMetatype, | ||
operator_metatypes.PTModuleEmbeddingMetatype, | ||
operator_metatypes.PTEmbeddingBagMetatype, | ||
operator_metatypes.PTModuleEmbeddingBagMetatype, | ||
], | ||
} | ||
|
||
|
||
QUANTIZATION_LAYER_METATYPES: List[PTOperatorMetatype] = OPERATORS_WITH_WEIGHTS_METATYPES |