The omopgenerics package provides definitions of core classes and methods used by analytic pipelines that query the OMOP common data model.
#> Warning in citation("omopgenerics"): no date field in DESCRIPTION file of
#> package 'omopgenerics'
#> Warning in citation("omopgenerics"): could not determine year for
#> 'omopgenerics' from package DESCRIPTION file
#>
#> To cite package 'omopgenerics' in publications use:
#>
#> Català M, Burn E (????). _omopgenerics: Methods and Classes for the
#> OMOP Common Data Model_. R package version 0.3.1.900,
#> <https://darwin-eu.github.io/omopgenerics/>.
#>
#> A BibTeX entry for LaTeX users is
#>
#> @Manual{,
#> title = {omopgenerics: Methods and Classes for the OMOP Common Data Model},
#> author = {Martí Català and Edward Burn},
#> note = {R package version 0.3.1.900},
#> url = {https://darwin-eu.github.io/omopgenerics/},
#> }
If you find the package useful in supporting your research study, please consider citing this package.
You can install the development version of OMOPGenerics from GitHub with:
install.packages("pak")
pak::pkg_install("darwin-eu/omopgenerics")
And load it using the library command:
library(omopgenerics)
library(dplyr)
A cdm reference is a single R object that represents OMOP CDM data. The tables in the cdm reference may be in a database, but a cdm reference may also contain OMOP CDM tables that are in dataframes/tibbles or in arrow. In the latter case the cdm reference would typically be a subset of an original cdm reference that has been derived as part of a particular analysis.
omopgenerics contains the class definition of a cdm reference and a dataframe implementation. For creating a cdm reference using a database, see the CDMConnector package (https://darwin-eu.github.io/CDMConnector/).
A cdm object can contain four type of tables:
- Standard tables:
omopTables()
#> [1] "person" "observation_period" "visit_occurrence"
#> [4] "visit_detail" "condition_occurrence" "drug_exposure"
#> [7] "procedure_occurrence" "device_exposure" "measurement"
#> [10] "observation" "death" "note"
#> [13] "note_nlp" "specimen" "fact_relationship"
#> [16] "location" "care_site" "provider"
#> [19] "payer_plan_period" "cost" "drug_era"
#> [22] "dose_era" "condition_era" "metadata"
#> [25] "cdm_source" "concept" "vocabulary"
#> [28] "domain" "concept_class" "concept_relationship"
#> [31] "relationship" "concept_synonym" "concept_ancestor"
#> [34] "source_to_concept_map" "drug_strength" "cohort_definition"
#> [37] "attribute_definition" "concept_recommended"
Each one of the tables has a required columns. For example, for the
person
table this are the required columns:
omopColumns(table = "person")
#> [1] "person_id" "gender_concept_id"
#> [3] "year_of_birth" "month_of_birth"
#> [5] "day_of_birth" "birth_datetime"
#> [7] "race_concept_id" "ethnicity_concept_id"
#> [9] "location_id" "provider_id"
#> [11] "care_site_id" "person_source_value"
#> [13] "gender_source_value" "gender_source_concept_id"
#> [15] "race_source_value" "race_source_concept_id"
#> [17] "ethnicity_source_value" "ethnicity_source_concept_id"
- Cohort tables We can see the cohort-related tables and their required columns.
cohortTables()
#> [1] "cohort" "cohort_set" "cohort_attrition" "cohort_codelist"
cohortColumns(table = "cohort")
#> [1] "cohort_definition_id" "subject_id" "cohort_start_date"
#> [4] "cohort_end_date"
In addition, cohorts are defined in terms of a generatedCohortSet
class. For more details on this class definition see the corresponding
vignette.
- Achilles tables The Achilles R package generates descriptive statistics about the data contained in the OMOP CDM. Again, we can see the tables created and their required columns.
achillesTables()
#> [1] "achilles_analysis" "achilles_results" "achilles_results_dist"
achillesColumns(table = "achilles_results")
#> [1] "analysis_id" "stratum_1" "stratum_2" "stratum_3" "stratum_4"
#> [6] "stratum_5" "count_value"
- Other tables, these other tables can have any format.
Any table to be part of a cdm object has to fulfill 4 conditions:
-
All must share a common source.
-
The name of the tables must be lowercase.
-
The name of the column names of each table must be lowercase.
-
person
andobservation_period
must be present.
A concept set can be represented as either a codelist or a concept set expression. A codelist is a named list, with each item of the list containing specific concept IDs.
condition_codes <- list("diabetes" = c(201820, 4087682, 3655269),
"asthma" = 317009)
condition_codes <- newCodelist(condition_codes)
#> Warning: ! `codelist` contains numeric values, they are casted to integers.
condition_codes
#>
#> ── 2 codelists ─────────────────────────────────────────────────────────────────
#>
#> - asthma (1 codes)
#> - diabetes (3 codes)
Meanwhile, a concept set expression provides a high-level definition of concepts that, when applied to a specific OMOP CDM vocabulary version (by making use of the concept hierarchies and relationships), will result in a codelist.
condition_cs <- list(
"diabetes" = dplyr::tibble(
"concept_id" = c(201820, 4087682),
"excluded" = c(FALSE, FALSE),
"descendants" = c(TRUE, FALSE),
"mapped" = c(FALSE, FALSE)
),
"asthma" = dplyr::tibble(
"concept_id" = 317009,
"excluded" = FALSE,
"descendants" = FALSE,
"mapped" = FALSE
)
)
condition_cs <- newConceptSetExpression(condition_cs)
condition_cs
#>
#> ── 2 conceptSetExpressions ─────────────────────────────────────────────────────
#>
#> - asthma (1 concept criteria)
#> - diabetes (2 concept criteria)
A cohort is a set of persons who satisfy one or more inclusion criteria for a duration of time and, when defined, this table in a cdm reference has a cohort table class. Cohort tables are then associated with attributes such as settings and attrition.
person <- tibble(
person_id = 1, gender_concept_id = 0, year_of_birth = 1990,
race_concept_id = 0, ethnicity_concept_id = 0
)
observation_period <- dplyr::tibble(
observation_period_id = 1, person_id = 1,
observation_period_start_date = as.Date("2000-01-01"),
observation_period_end_date = as.Date("2023-12-31"),
period_type_concept_id = 0
)
diabetes <- tibble(
cohort_definition_id = 1, subject_id = 1,
cohort_start_date = as.Date("2020-01-01"),
cohort_end_date = as.Date("2020-01-10")
)
cdm <- cdmFromTables(
tables = list(
"person" = person,
"observation_period" = observation_period,
"diabetes" = diabetes
),
cdmName = "example_cdm"
)
#> Warning: ! 5 column in person do not match expected column type:
#> • `person_id` is numeric but expected integer
#> • `gender_concept_id` is numeric but expected integer
#> • `year_of_birth` is numeric but expected integer
#> • `race_concept_id` is numeric but expected integer
#> • `ethnicity_concept_id` is numeric but expected integer
#> Warning: ! 3 column in observation_period do not match expected column type:
#> • `observation_period_id` is numeric but expected integer
#> • `person_id` is numeric but expected integer
#> • `period_type_concept_id` is numeric but expected integer
cdm$diabetes <- newCohortTable(cdm$diabetes)
#> Warning: ! 2 column in diabetes do not match expected column type:
#> • `cohort_definition_id` is numeric but expected integer
#> • `subject_id` is numeric but expected integer
cdm$diabetes
#> # A tibble: 1 × 4
#> cohort_definition_id subject_id cohort_start_date cohort_end_date
#> <dbl> <dbl> <date> <date>
#> 1 1 1 2020-01-01 2020-01-10
settings(cdm$diabetes)
#> # A tibble: 1 × 2
#> cohort_definition_id cohort_name
#> <int> <chr>
#> 1 1 cohort_1
attrition(cdm$diabetes)
#> # A tibble: 1 × 7
#> cohort_definition_id number_records number_subjects reason_id reason
#> <int> <int> <int> <int> <chr>
#> 1 1 1 1 1 Initial qualify…
#> # ℹ 2 more variables: excluded_records <int>, excluded_subjects <int>
cohortCount(cdm$diabetes)
#> # A tibble: 1 × 3
#> cohort_definition_id number_records number_subjects
#> <int> <int> <int>
#> 1 1 1 1
A summarised result provides a standard format for the results of an analysis performed against data mapped to the OMOP CDM.
For example this format is used when we get a summary of the cdm as a whole
summary(cdm) |>
dplyr::glimpse()
#> Rows: 13
#> Columns: 13
#> $ result_id <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
#> $ cdm_name <chr> "example_cdm", "example_cdm", "example_cdm", "example…
#> $ group_name <chr> "overall", "overall", "overall", "overall", "overall"…
#> $ group_level <chr> "overall", "overall", "overall", "overall", "overall"…
#> $ strata_name <chr> "overall", "overall", "overall", "overall", "overall"…
#> $ strata_level <chr> "overall", "overall", "overall", "overall", "overall"…
#> $ variable_name <chr> "snapshot_date", "person_count", "observation_period_…
#> $ variable_level <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA
#> $ estimate_name <chr> "value", "count", "count", "source_name", "version", …
#> $ estimate_type <chr> "date", "integer", "integer", "character", "character…
#> $ estimate_value <chr> "2024-11-01", "1", "1", "", NA, "5.3", "", "", "", ""…
#> $ additional_name <chr> "overall", "overall", "overall", "overall", "overall"…
#> $ additional_level <chr> "overall", "overall", "overall", "overall", "overall"…
and also when we summarise a cohort
summary(cdm$diabetes) |>
dplyr::glimpse()
#> Rows: 6
#> Columns: 13
#> $ result_id <int> 1, 1, 2, 2, 2, 2
#> $ cdm_name <chr> "example_cdm", "example_cdm", "example_cdm", "example…
#> $ group_name <chr> "cohort_name", "cohort_name", "cohort_name", "cohort_…
#> $ group_level <chr> "cohort_1", "cohort_1", "cohort_1", "cohort_1", "coho…
#> $ strata_name <chr> "overall", "overall", "reason", "reason", "reason", "…
#> $ strata_level <chr> "overall", "overall", "Initial qualifying events", "I…
#> $ variable_name <chr> "number_records", "number_subjects", "number_records"…
#> $ variable_level <chr> NA, NA, NA, NA, NA, NA
#> $ estimate_name <chr> "count", "count", "count", "count", "count", "count"
#> $ estimate_type <chr> "integer", "integer", "integer", "integer", "integer"…
#> $ estimate_value <chr> "1", "1", "1", "1", "0", "0"
#> $ additional_name <chr> "overall", "overall", "reason_id", "reason_id", "reas…
#> $ additional_level <chr> "overall", "overall", "1", "1", "1", "1"