Skip to content

Commit

Permalink
docs: Update getting started and GPU section (mudler#1362)
Browse files Browse the repository at this point in the history
  • Loading branch information
mudler authored Nov 29, 2023
1 parent 519285b commit 4e0ad33
Show file tree
Hide file tree
Showing 2 changed files with 153 additions and 126 deletions.
90 changes: 90 additions & 0 deletions docs/content/features/GPU-acceleration.md
Original file line number Diff line number Diff line change
Expand Up @@ -8,3 +8,93 @@ weight = 2
{{% notice note %}}
Section under construction
{{% /notice %}}

This section contains instruction on how to use LocalAI with GPU acceleration.

{{% notice note %}}
For accelleration for AMD or Metal HW there are no specific container images, see the [build]({{%relref "build/#acceleration" %}})
{{% /notice %}}

### CUDA

Requirement: nvidia-container-toolkit (installation instructions [1](https://www.server-world.info/en/note?os=Ubuntu_22.04&p=nvidia&f=2) [2](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html))

To use CUDA, use the images with the `cublas` tag.

The image list is on [quay](https://quay.io/repository/go-skynet/local-ai?tab=tags):

- CUDA `11` tags: `master-cublas-cuda11`, `v1.40.0-cublas-cuda11`, ...
- CUDA `12` tags: `master-cublas-cuda12`, `v1.40.0-cublas-cuda12`, ...
- CUDA `11` + FFmpeg tags: `master-cublas-cuda11-ffmpeg`, `v1.40.0-cublas-cuda11-ffmpeg`, ...
- CUDA `12` + FFmpeg tags: `master-cublas-cuda12-ffmpeg`, `v1.40.0-cublas-cuda12-ffmpeg`, ...

In addition to the commands to run LocalAI normally, you need to specify `--gpus all` to docker, for example:

```bash
docker run --rm -ti --gpus all -p 8080:8080 -e DEBUG=true -e MODELS_PATH=/models -e THREADS=1 -v $PWD/models:/models quay.io/go-skynet/local-ai:v1.40.0-cublas-cuda12
```

If the GPU inferencing is working, you should be able to see something like:

```
5:22PM DBG Loading model in memory from file: /models/open-llama-7b-q4_0.bin
ggml_init_cublas: found 1 CUDA devices:
Device 0: Tesla T4
llama.cpp: loading model from /models/open-llama-7b-q4_0.bin
llama_model_load_internal: format = ggjt v3 (latest)
llama_model_load_internal: n_vocab = 32000
llama_model_load_internal: n_ctx = 1024
llama_model_load_internal: n_embd = 4096
llama_model_load_internal: n_mult = 256
llama_model_load_internal: n_head = 32
llama_model_load_internal: n_layer = 32
llama_model_load_internal: n_rot = 128
llama_model_load_internal: ftype = 2 (mostly Q4_0)
llama_model_load_internal: n_ff = 11008
llama_model_load_internal: n_parts = 1
llama_model_load_internal: model size = 7B
llama_model_load_internal: ggml ctx size = 0.07 MB
llama_model_load_internal: using CUDA for GPU acceleration
llama_model_load_internal: mem required = 4321.77 MB (+ 1026.00 MB per state)
llama_model_load_internal: allocating batch_size x 1 MB = 512 MB VRAM for the scratch buffer
llama_model_load_internal: offloading 10 repeating layers to GPU
llama_model_load_internal: offloaded 10/35 layers to GPU
llama_model_load_internal: total VRAM used: 1598 MB
...................................................................................................
llama_init_from_file: kv self size = 512.00 MB
```

#### Model configuration

Depending on the model architecture and backend used, there might be different ways to enable GPU acceleration. It is required to configure the model you intend to use with a YAML config file. For example, for `llama.cpp` workloads a configuration file might look like this (where `gpu_layers` is the number of layers to offload to the GPU):

```yaml
name: my-model-name
# Default model parameters
parameters:
# Relative to the models path
model: llama.cpp-model.ggmlv3.q5_K_M.bin

context_size: 1024
threads: 1

f16: true # enable with GPU acceleration
gpu_layers: 22 # GPU Layers (only used when built with cublas)

```
For diffusers instead, it might look like this instead:
```yaml
name: stablediffusion
parameters:
model: toonyou_beta6.safetensors
backend: diffusers
step: 30
f16: true
diffusers:
pipeline_type: StableDiffusionPipeline
cuda: true
enable_parameters: "negative_prompt,num_inference_steps,clip_skip"
scheduler_type: "k_dpmpp_sde"
```
189 changes: 63 additions & 126 deletions docs/content/getting_started/_index.en.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,16 +14,33 @@ See also our [How to]({{%relref "howtos" %}}) section for end-to-end guided exam

The easiest way to run LocalAI is by using [`docker compose`](https://docs.docker.com/compose/install/) or with [Docker](https://docs.docker.com/engine/install/) (to build locally, see the [build section]({{%relref "build" %}})).

{{% notice note %}}
To run with GPU Accelleration, see [GPU acceleration]({{%relref "features/gpu-acceleration" %}}).
{{% /notice %}}

{{< tabs >}}
{{% tab name="Docker" %}}

```bash
# Prepare the models into the `model` directory
mkdir models

# copy your models to it
cp your-model.bin models/

# run the LocalAI container
docker run -p 8080:8080 -v $PWD/models:/models -ti --rm quay.io/go-skynet/local-ai:latest --models-path /models --context-size 700 --threads 4
# You should see:
#
# ┌───────────────────────────────────────────────────┐
# │ Fiber v2.42.0 │
# │ http://127.0.0.1:8080 │
# │ (bound on host 0.0.0.0 and port 8080) │
# │ │
# │ Handlers ............. 1 Processes ........... 1 │
# │ Prefork ....... Disabled PID ................. 1 │
# └───────────────────────────────────────────────────┘

# Try the endpoint with curl
curl http://localhost:8080/v1/completions -H "Content-Type: application/json" -d '{
"model": "your-model.bin",
Expand All @@ -32,13 +49,16 @@ curl http://localhost:8080/v1/completions -H "Content-Type: application/json" -d
}'
```

{{% notice note %}}
- If running on Apple Silicon (ARM) it is **not** suggested to run on Docker due to emulation. Follow the [build instructions]({{%relref "build" %}}) to use Metal acceleration for full GPU support.
- If you are running Apple x86_64 you can use `docker`, there is no additional gain into building it from source.
{{% /notice %}}

{{% /tab %}}
{{% tab name="Docker compose" %}}



```bash

# Clone LocalAI
git clone https://github.com/go-skynet/LocalAI

cd LocalAI
Expand Down Expand Up @@ -67,35 +87,49 @@ curl http://localhost:8080/v1/completions -H "Content-Type: application/json" -d
"temperature": 0.7
}'
```
{{% /tab %}}

{{< /tabs >}}
Note: If you are on Windows, please run ``docker-compose`` not ``docker compose`` and make sure the project is in the Linux Filesystem, otherwise loading models might be slow. For more Info: [Microsoft Docs](https://learn.microsoft.com/en-us/windows/wsl/filesystems)

{{% /tab %}}

### Example: Use luna-ai-llama2 model with `docker compose`
{{% tab name="Kubernetes" %}}

For installing LocalAI in Kubernetes, you can use the following helm chart:

```bash
# Clone LocalAI
git clone https://github.com/go-skynet/LocalAI
# Install the helm repository
helm repo add go-skynet https://go-skynet.github.io/helm-charts/
# Update the repositories
helm repo update
# Get the values
helm show values go-skynet/local-ai > values.yaml

# Edit the values value if needed
# vim values.yaml ...

# Install the helm chart
helm install local-ai go-skynet/local-ai -f values.yaml
```

cd LocalAI
{{% /tab %}}

# (optional) Checkout a specific LocalAI tag
# git checkout -b build <TAG>
{{< /tabs >}}


### Example: Use luna-ai-llama2 model with `docker`


```bash
mkdir models

# Download luna-ai-llama2 to models/
wget https://huggingface.co/TheBloke/Luna-AI-Llama2-Uncensored-GGUF/resolve/main/luna-ai-llama2-uncensored.Q4_0.gguf -O models/luna-ai-llama2

# Use a template from the examples
cp -rf prompt-templates/getting_started.tmpl models/luna-ai-llama2.tmpl

# (optional) Edit the .env file to set things like context size and threads
# vim .env
docker run -p 8080:8080 -v $PWD/models:/models -ti --rm quay.io/go-skynet/local-ai:latest --models-path /models --context-size 700 --threads 4

# start with docker compose
docker compose up -d --pull always
# or you can build the images with:
# docker compose up -d --build
# Now API is accessible at localhost:8080
curl http://localhost:8080/v1/models
# {"object":"list","data":[{"id":"luna-ai-llama2","object":"model"}]}
Expand All @@ -109,25 +143,16 @@ curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/jso
# {"model":"luna-ai-llama2","choices":[{"message":{"role":"assistant","content":"I'm doing well, thanks. How about you?"}}]}
```

{{% notice note %}}
- If running on Apple Silicon (ARM) it is **not** suggested to run on Docker due to emulation. Follow the [build instructions]({{%relref "build" %}}) to use Metal acceleration for full GPU support.
- If you are running Apple x86_64 you can use `docker`, there is no additional gain into building it from source.
- If you are on Windows, please run ``docker-compose`` not ``docker compose`` and make sure the project is in the Linux Filesystem, otherwise loading models might be slow. For more Info: [Microsoft Docs](https://learn.microsoft.com/en-us/windows/wsl/filesystems)
{{% /notice %}}
To see other model configurations, see also the example section [here](https://github.com/mudler/LocalAI/tree/master/examples/configurations).


### From binaries

LocalAI binary releases are available in [Github](https://github.com/go-skynet/LocalAI/releases).

You can control LocalAI with command line arguments, to specify a binding address, or the number of threads.

<details>

Usage:

```
local-ai --models-path <model_path> [--address <address>] [--threads <num_threads>]
```
### CLI parameters

| Parameter | Environmental Variable | Default Variable | Description |
| ------------------------------ | ------------------------------- | -------------------------------------------------- | ------------------------------------------------------------------- |
Expand All @@ -145,10 +170,16 @@ local-ai --models-path <model_path> [--address <address>] [--threads <num_thread
| --context-size value | $CONTEXT_SIZE | 512 | Default context size of the model |
| --upload-limit value | $UPLOAD_LIMIT | 15 | Default upload limit in megabytes (audio file upload) |
| --galleries | $GALLERIES | | Allows to set galleries from command line |
|--parallel-requests | $PARALLEL_REQUESTS | false | Enable backends to handle multiple requests in parallel. This is for backends that supports multiple requests in parallel, like llama.cpp or vllm |
| --single-active-backend | $SINGLE_ACTIVE_BACKEND | false | Allow only one backend to be running |
| --api-keys value | $API_KEY | empty | List of API Keys to enable API authentication. When this is set, all the requests must be authenticated with one of these API keys.
| --enable-watchdog-idle | $WATCHDOG_IDLE | false | Enable watchdog for stopping idle backends. This will stop the backends if are in idle state for too long. (default: false) [$WATCHDOG_IDLE]
| --enable-watchdog-busy | $WATCHDOG_BUSY | false | Enable watchdog for stopping busy backends that exceed a defined threshold.|
| --watchdog-busy-timeout value | $WATCHDOG_BUSY_TIMEOUT | 5m | Watchdog timeout. This will restart the backend if it crashes. |
| --watchdog-idle-timeout value | $WATCHDOG_IDLE_TIMEOUT | 15m | Watchdog idle timeout. This will restart the backend if it crashes. |
| --preload-backend-only | $PRELOAD_BACKEND_ONLY | false | If set, the api is NOT launched, and only the preloaded models / backends are started. This is intended for multi-node setups. |

</details>

### Docker
### Container images

LocalAI has a set of images to support CUDA, ffmpeg and 'vanilla' (CPU-only). The image list is on [quay](https://quay.io/repository/go-skynet/local-ai?tab=tags):

Expand All @@ -166,24 +197,6 @@ Example:
- CUDA 11+FFmpeg: `quay.io/go-skynet/local-ai:v1.40.0-cublas-cuda11-ffmpeg`
- CUDA 12+FFmpeg: `quay.io/go-skynet/local-ai:v1.40.0-cublas-cuda12-ffmpeg`

Example of starting the API with `docker`:

```bash
docker run -p 8080:8080 -v $PWD/models:/models -ti --rm quay.io/go-skynet/local-ai:latest --models-path /models --context-size 700 --threads 4
```

You should see:
```
┌───────────────────────────────────────────────────┐
│ Fiber v2.42.0 │
│ http://127.0.0.1:8080 │
│ (bound on host 0.0.0.0 and port 8080) │
│ │
│ Handlers ............. 1 Processes ........... 1 │
│ Prefork ....... Disabled PID ................. 1 │
└───────────────────────────────────────────────────┘
```

{{% notice note %}}
Note: the binary inside the image is pre-compiled, and might not suite all CPUs.
To enable CPU optimizations for the execution environment,
Expand All @@ -195,82 +208,6 @@ See [docs on all environment variables]({{%relref "advanced#environment-variable
for more info.
{{% /notice %}}

#### CUDA:

Requirement: nvidia-container-toolkit (installation instructions [1](https://www.server-world.info/en/note?os=Ubuntu_22.04&p=nvidia&f=2) [2](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html))

You need to run the image with `--gpus all`, and

```
docker run --rm -ti --gpus all -p 8080:8080 -e DEBUG=true -e MODELS_PATH=/models -e PRELOAD_MODELS='[{"url": "github:go-skynet/model-gallery/openllama_7b.yaml", "name": "gpt-3.5-turbo", "overrides": { "f16":true, "gpu_layers": 35, "mmap": true, "batch": 512 } } ]' -e THREADS=1 -v $PWD/models:/models quay.io/go-skynet/local-ai:v1.40.0-cublas-cuda12
```

In the terminal where LocalAI was started, you should see:

```
5:13PM DBG Config overrides map[gpu_layers:10]
5:13PM DBG Checking "open-llama-7b-q4_0.bin" exists and matches SHA
5:13PM DBG Downloading "https://huggingface.co/SlyEcho/open_llama_7b_ggml/resolve/main/open-llama-7b-q4_0.bin"
5:13PM DBG Downloading open-llama-7b-q4_0.bin: 393.4 MiB/3.5 GiB (10.88%) ETA: 40.965550709s
5:13PM DBG Downloading open-llama-7b-q4_0.bin: 870.8 MiB/3.5 GiB (24.08%) ETA: 31.526866642s
5:13PM DBG Downloading open-llama-7b-q4_0.bin: 1.3 GiB/3.5 GiB (36.26%) ETA: 26.37351405s
5:13PM DBG Downloading open-llama-7b-q4_0.bin: 1.7 GiB/3.5 GiB (48.64%) ETA: 21.11682624s
5:13PM DBG Downloading open-llama-7b-q4_0.bin: 2.2 GiB/3.5 GiB (61.49%) ETA: 15.656029361s
5:14PM DBG Downloading open-llama-7b-q4_0.bin: 2.6 GiB/3.5 GiB (74.33%) ETA: 10.360950226s
5:14PM DBG Downloading open-llama-7b-q4_0.bin: 3.1 GiB/3.5 GiB (87.05%) ETA: 5.205663978s
5:14PM DBG Downloading open-llama-7b-q4_0.bin: 3.5 GiB/3.5 GiB (99.85%) ETA: 61.269714ms
5:14PM DBG File "open-llama-7b-q4_0.bin" downloaded and verified
5:14PM DBG Prompt template "openllama-completion" written
5:14PM DBG Prompt template "openllama-chat" written
5:14PM DBG Written config file /models/gpt-3.5-turbo.yaml
```

LocalAI will download automatically the OpenLLaMa model and run with GPU. Wait for the download to complete. You can also avoid automatic download of the model by not specifying a `PRELOAD_MODELS` variable. For compatible models with GPU support see the [model compatibility table]({{%relref "model-compatibility" %}}).

To test that the API is working run in another terminal:

```
curl http://localhost:8080/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "gpt-3.5-turbo",
"messages": [{"role": "user", "content": "What is an alpaca?"}],
"temperature": 0.1
}'
```

And if the GPU inferencing is working, you should be able to see something like:

```
5:22PM DBG Loading model in memory from file: /models/open-llama-7b-q4_0.bin
ggml_init_cublas: found 1 CUDA devices:
Device 0: Tesla T4
llama.cpp: loading model from /models/open-llama-7b-q4_0.bin
llama_model_load_internal: format = ggjt v3 (latest)
llama_model_load_internal: n_vocab = 32000
llama_model_load_internal: n_ctx = 1024
llama_model_load_internal: n_embd = 4096
llama_model_load_internal: n_mult = 256
llama_model_load_internal: n_head = 32
llama_model_load_internal: n_layer = 32
llama_model_load_internal: n_rot = 128
llama_model_load_internal: ftype = 2 (mostly Q4_0)
llama_model_load_internal: n_ff = 11008
llama_model_load_internal: n_parts = 1
llama_model_load_internal: model size = 7B
llama_model_load_internal: ggml ctx size = 0.07 MB
llama_model_load_internal: using CUDA for GPU acceleration
llama_model_load_internal: mem required = 4321.77 MB (+ 1026.00 MB per state)
llama_model_load_internal: allocating batch_size x 1 MB = 512 MB VRAM for the scratch buffer
llama_model_load_internal: offloading 10 repeating layers to GPU
llama_model_load_internal: offloaded 10/35 layers to GPU
llama_model_load_internal: total VRAM used: 1598 MB
...................................................................................................
llama_init_from_file: kv self size = 512.00 MB
```

{{% notice note %}}
When enabling GPU inferencing, set the number of GPU layers to offload with: `gpu_layers: 1` to your YAML model config file and `f16: true`. You might also need to set `low_vram: true` if the device has low VRAM.
{{% /notice %}}

### Run LocalAI in Kubernetes

LocalAI can be installed inside Kubernetes with helm.
Expand Down

0 comments on commit 4e0ad33

Please sign in to comment.