Skip to content

Commit

Permalink
Merge branch 'current' into dbeatty10-patch-1
Browse files Browse the repository at this point in the history
  • Loading branch information
mirnawong1 authored Aug 29, 2024
2 parents 75a19a1 + 469025b commit a49c5e1
Showing 1 changed file with 167 additions and 4 deletions.
171 changes: 167 additions & 4 deletions website/docs/docs/build/cumulative-metrics.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,8 @@ Note that we use the double colon (::) to indicate whether a parameter is nested

## Parameters

<VersionBlock firstVersion="1.9">

| Parameter | <div style={{width:'350px'}}>Description</div> | Type |
| --------- | ----------- | ---- |
| `name` | The name of the metric. | Required |
Expand All @@ -32,11 +34,33 @@ Note that we use the double colon (::) to indicate whether a parameter is nested
| `measure::fill_nulls_with` | Set the value in your metric definition instead of null (such as zero). | Optional |
| `measure::join_to_timespine` | Boolean that indicates if the aggregated measure should be joined to the time spine table to fill in missing dates. Default `false`. | Optional |

</VersionBlock>

<VersionBlock lastVersion="1.8">

| Parameter | <div style={{width:'350px'}}>Description</div> | Type |
| --------- | ----------- | ---- |
| `name` | The name of the metric. | Required |
| `description` | The description of the metric. | Optional |
| `type` | The type of the metric (cumulative, derived, ratio, or simple). | Required |
| `label` | Required string that defines the display value in downstream tools. Accepts plain text, spaces, and quotes (such as `orders_total` or `"orders_total"`). | Required |
| `type_params` | The type parameters of the metric. Supports nested parameters indicated by the double colon, such as `type_params::measure`. | Required |
| `window` | The accumulation window, such as 1 month, 7 days, 1 year. This can't be used with `grain_to_date`. | Optional |
| `grain_to_date` | Sets the accumulation grain, such as `month`, which will accumulate data for one month and then restart at the beginning of the next. This can't be used with `window`. | Optional |
| `type_params::measure` | A list of measure inputs | Required |
| `measure:name` | The measure you are referencing. | Optional |
| `measure:fill_nulls_with` | Set the value in your metric definition instead of null (such as zero).| Optional |
| `measure:join_to_timespine` | Boolean that indicates if the aggregated measure should be joined to the time spine table to fill in missing dates. Default `false`. | Optional |

</VersionBlock>

### Complete specification
The following displays the complete specification for cumulative metrics, along with an example:

<File name='models/marts/sem_semantic_model_name.yml'>

<VersionBlock firstVersion="1.9">

```yaml
metrics:
- name: The metric name # Required
Expand All @@ -54,24 +78,59 @@ metrics:
join_to_timespine: true/false # Boolean that indicates if the aggregated measure should be joined to the time spine table to fill in missing dates. Default `false`. # Optional

```
</VersionBlock>

<VersionBlock lastVersion="1.8">

```yaml
metrics:
- name: The metric name # Required
description: The metric description # Optional
type: cumulative # Required
label: The value that will be displayed in downstream tools # Required
type_params: # Required
measure:
name: The measure you are referencing # Required
fill_nulls_with: Set the value in your metric definition instead of null (such as zero) # Optional
join_to_timespine: false # Boolean that indicates if the aggregated measure should be joined to the time spine table to fill in missing dates. Default `false`. # Optional
window: 1 month # The accumulation window, such as 1 month, 7 days, 1 year. Optional. Cannot be used with grain_to_date.
grain_to_date: month # Sets the accumulation grain, such as month will accumulate data for one month, then restart at the beginning of the next. Optional. Cannot be used with window.
```
</VersionBlock>
</File>
## Cumulative metrics example
Cumulative metrics measure data over a given window and consider the window infinite when no window parameter is passed, accumulating the data over all time.
The following example shows how to define cumulative metrics in a YAML file. In this example, we define three cumulative metrics:
The following example shows how to define cumulative metrics in a YAML file:
<VersionBlock firstVersion="1.9">
- `cumulative_order_total`: Calculates the cumulative order total over all time. Uses `type params` to specify the measure `order_total` to be aggregated.

- `cumulative_order_total_l1m`: Calculates the trailing 1-month cumulative order total. Uses `cumulative_type_params` to specify a `window` of 1 month.

- `cumulative_order_total_mtd`: Calculates the month-to-date cumulative order total, respectively. Uses `cumulative_type_params` to specify a `grain_to_date` of `month`.

</VersionBlock>

<VersionBlock lastVersion="1.8">

- `cumulative_order_total`: Calculates the cumulative order total over all time. Uses `type params` to specify the measure `order_total` to be aggregated.

- `cumulative_order_total_l1m`: Calculates the trailing 1-month cumulative order total. Uses `type params` to specify a `window` of 1 month.

- `cumulative_order_total_mtd`: Calculates the month-to-date cumulative order total, respectively. Uses `type params` to specify a `grain_to_date` of `month`.

</VersionBlock>

<File name='models/marts/sem_semantic_model_name.yml'>

```yaml
<VersionBlock firstVersion="1.9">

```yaml
metrics:
- name: cumulative_order_total
label: Cumulative order total (All-Time)
Expand Down Expand Up @@ -101,8 +160,44 @@ metrics:
cumulative_type_params:
grain_to_date: month
```
</VersionBlock>

<VersionBlock lastVersion="1.8">

```yaml
metrics:
- name: cumulative_order_total
label: Cumulative order total (All-Time)
description: The cumulative value of all orders
type: cumulative
type_params:
measure:
name: order_total
- name: cumulative_order_total_l1m
label: Cumulative order total (L1M)
description: Trailing 1-month cumulative order total
type: cumulative
type_params:
measure:
name: order_total
window: 1 month
- name: cumulative_order_total_mtd
label: Cumulative order total (MTD)
description: The month-to-date value of all orders
type: cumulative
type_params:
measure:
name: order_total
grain_to_date: month
```
</VersionBlock>

</File>

<VersionBlock firstVersion="1.9">

### Granularity options

Use the `period_agg` parameter with `first()`, `last()`, and `average()` functions to aggregate cumulative metrics over the requested period. This is because granularity options for cumulative metrics are different than the options for other metric types.
Expand Down Expand Up @@ -192,6 +287,8 @@ group by

</Expandable>

</VersionBlock>

### Window options

This section details examples of when to specify and not to specify window options.
Expand All @@ -218,6 +315,8 @@ measures:

We can write a cumulative metric `weekly_customers` as such:

<VersionBlock firstVersion="1.9">

<File name='models/marts/sem_semantic_model_name.yml'>

``` yaml
Expand All @@ -240,6 +339,31 @@ From the sample YAML example, note the following:

For example, in the `weekly_customers` cumulative metric, MetricFlow takes a sliding 7-day window of relevant customers and applies a count distinct function.

If you remove `window`, the measure will accumulate over all time.
</VersionBlock>

<VersionBlock lastVersion="1.8">

<File name='models/marts/sem_semantic_model_name.yml'>

``` yaml
metrics:
- name: weekly_customers # Define the measure and the window.
type: cumulative
type_params:
measure: customers
window: 7 days # Setting the window to 7 days since we want to track weekly active
```
</File>
</VersionBlock>

From the sample YAML example, note the following:

* `type`: Specify cumulative to indicate the type of metric.
* `type_params`: Configure the cumulative metric by providing a `measure` and optionally add a `window` or `grain_to_date` configuration.

For example, in the `weekly_customers` cumulative metric, MetricFlow takes a sliding 7-day window of relevant customers and applies a count distinct function.

If you remove `window`, the measure will accumulate over all time.

</Expandable>
Expand Down Expand Up @@ -286,7 +410,6 @@ metrics:
```

</File>

</Expandable>

### Grain to date
Expand All @@ -310,6 +433,8 @@ We can compare the difference between a 1-month window and a monthly grain to da

<File name='models/marts/sem_semantic_model_name.yml'>

<VersionBlock firstVersion="1.9">

```yaml
metrics:
- name: cumulative_order_total_l1m # For this metric, we use a window of 1 month
Expand All @@ -330,10 +455,33 @@ metrics:
grain_to_date: month # Resets at the beginning of each month
period_agg: first # Optional. Defaults to first. Accepted values: first|last|average
```
</VersionBlock>

<VersionBlock lastVersion="1.8">

```yaml
metrics:
- name: cumulative_order_total_l1m # For this metric, we use a window of 1 month
label: Cumulative order total (L1M)
description: Trailing 1-month cumulative order amount
type: cumulative
type_params:
measure: order_total
window: 1 month # Applies a sliding window of 1 month
- name: cumulative_order_total_mtd # For this metric, we use a monthly grain-to-date
label: Cumulative order total (MTD)
description: The month-to-date value of all orders
type: cumulative
type_params:
measure: order_total
grain_to_date: month # Resets at the beginning of each month
```
</VersionBlock>
</File>

Cumulative metric with grain to date:

<VersionBlock firstVersion="1.9">
<File name='models/marts/sem_semantic_model_name.yml'>

```yaml
Expand Down Expand Up @@ -390,10 +538,25 @@ order by
```

</Expandable>
</VersionBlock>

<VersionBlock lastVersion="1.8">
<File name='models/marts/sem_semantic_model_name.yml'>

```yaml
- name: orders_last_month_to_date
label: Orders month to date
type: cumulative
type_params:
measure: order_count
grain_to_date: month
```
</File>
</VersionBlock>

## SQL implementation example

To calculate the cumulative value of the metric over a given window, join the timespine table using the primary time dimension. Use the accumulation window in the join to decide which days to include in the calculation.
To calculate the cumulative value of the metric over a given window we do a time range join to a timespine table using the primary time dimension as the join key. We use the accumulation window in the join to decide whether a record should be included on a particular day. The following SQL code produced from an example cumulative metric is provided for reference:

To implement cumulative metrics, refer to the SQL code example:

Expand Down

0 comments on commit a49c5e1

Please sign in to comment.