Almost any beginner example of Pytorch is about image classification, so I wrote this one about how to classify texts :)
And if you want to lean more about Neural Networks you can check this blog post
import torch
import pandas as pd
import numpy as np
from collections import Counter
from sklearn.datasets import fetch_20newsgroups
x = torch.IntTensor([1,3,6])
y = torch.IntTensor([1,1,1])
result = x + y
print(result)
2
4
7
[torch.IntTensor of size 3]
categories = ["comp.graphics","sci.space","rec.sport.baseball"]
newsgroups_train = fetch_20newsgroups(subset='train', categories=categories)
newsgroups_test = fetch_20newsgroups(subset='test', categories=categories)
print('total texts in train:',len(newsgroups_train.data))
print('total texts in test:',len(newsgroups_test.data))
total texts in train: 1774
total texts in test: 1180
vocab = Counter()
for text in newsgroups_train.data:
for word in text.split(' '):
vocab[word.lower()]+=1
for text in newsgroups_test.data:
for word in text.split(' '):
vocab[word.lower()]+=1
total_words = len(vocab)
def get_word_2_index(vocab):
word2index = {}
for i,word in enumerate(vocab):
word2index[word.lower()] = i
return word2index
word2index = get_word_2_index(vocab)
def get_batch(df,i,batch_size):
batches = []
results = []
texts = df.data[i*batch_size:i*batch_size+batch_size]
categories = df.target[i*batch_size:i*batch_size+batch_size]
for text in texts:
layer = np.zeros(total_words,dtype=float)
for word in text.split(' '):
layer[word2index[word.lower()]] += 1
batches.append(layer)
for category in categories:
index_y = -1
if category == 0:
index_y = 0
elif category == 1:
index_y = 1
else:
index_y = 2
results.append(index_y)
return np.array(batches),np.array(results)
# Parameters
learning_rate = 0.01
num_epochs = 10
batch_size = 150
display_step = 1
# Network Parameters
hidden_size = 100 # 1st layer and 2nd layer number of features
input_size = total_words # Words in vocab
num_classes = 3 # Categories: graphics, sci.space and baseball
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
class OurNet(nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(OurNet, self).__init__()
self.layer_1 = nn.Linear(input_size,hidden_size, bias=True)
self.relu = nn.ReLU()
self.layer_2 = nn.Linear(hidden_size, hidden_size, bias=True)
self.output_layer = nn.Linear(hidden_size, num_classes, bias=True)
def forward(self, x):
out = self.layer_1(x)
out = self.relu(out)
out = self.layer_2(out)
out = self.relu(out)
out = self.output_layer(out)
return out
# input [batch_size, n_labels]
# output [max index for each item in batch, ... ,batch_size-1]
loss = nn.CrossEntropyLoss()
input = Variable(torch.randn(2, 5), requires_grad=True)
print(">>> batch of size 2 and 5 possible classes")
print(input)
target = Variable(torch.LongTensor(2).random_(5))
print(">>> array of size 'batch_size' with the index of the maxium label for each item")
print(target)
output = loss(input, target)
output.backward()
>>> batch of size 2 and 5 possible classes
Variable containing:
0.3048 -0.3044 1.1260 -1.0208 -0.1514
0.0144 1.1776 0.9862 1.2988 0.2670
[torch.FloatTensor of size 2x5]
>>> array of size 'batch_size' with the index of the maxium label for each item
Variable containing:
3
0
[torch.LongTensor of size 2]
net = OurNet(input_size, hidden_size, num_classes)
# Loss and Optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(net.parameters(), lr=learning_rate)
# Train the Model
for epoch in range(num_epochs):
total_batch = int(len(newsgroups_train.data)/batch_size)
# Loop over all batches
for i in range(total_batch):
batch_x,batch_y = get_batch(newsgroups_train,i,batch_size)
articles = Variable(torch.FloatTensor(batch_x))
labels = Variable(torch.LongTensor(batch_y))
#print("articles",articles)
#print(batch_x, labels)
#print("size labels",labels.size())
# Forward + Backward + Optimize
optimizer.zero_grad() # zero the gradient buffer
outputs = net(articles)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
if (i+1) % 4 == 0:
print ('Epoch [%d/%d], Step [%d/%d], Loss: %.4f'
%(epoch+1, num_epochs, i+1, len(newsgroups_train.data)//batch_size, loss.data[0]))
Epoch [1/10], Step [4/11], Loss: 0.7982
Epoch [1/10], Step [8/11], Loss: 0.4047
Epoch [2/10], Step [4/11], Loss: 0.0213
Epoch [2/10], Step [8/11], Loss: 0.0048
Epoch [3/10], Step [4/11], Loss: 0.1045
Epoch [3/10], Step [8/11], Loss: 0.3725
Epoch [4/10], Step [4/11], Loss: 0.0000
Epoch [4/10], Step [8/11], Loss: 0.0000
Epoch [5/10], Step [4/11], Loss: 0.0000
Epoch [5/10], Step [8/11], Loss: 0.0000
Epoch [6/10], Step [4/11], Loss: 0.0000
Epoch [6/10], Step [8/11], Loss: 0.0000
Epoch [7/10], Step [4/11], Loss: 0.0000
Epoch [7/10], Step [8/11], Loss: 0.0000
Epoch [8/10], Step [4/11], Loss: 0.0011
Epoch [8/10], Step [8/11], Loss: 0.0000
Epoch [9/10], Step [4/11], Loss: 0.0371
Epoch [9/10], Step [8/11], Loss: 0.0005
Epoch [10/10], Step [4/11], Loss: 0.0001
Epoch [10/10], Step [8/11], Loss: 0.1700
# Test the Model
correct = 0
total = 0
total_test_data = len(newsgroups_test.target)
batch_x_test,batch_y_test = get_batch(newsgroups_test,0,total_test_data)
articles = Variable(torch.FloatTensor(batch_x_test))
labels = torch.LongTensor(batch_y_test)
outputs = net(articles)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum()
print('Accuracy of the network on the 1180 test articles: %d %%' % (100 * correct / total))
Accuracy of the network on the 1180 test articles: 91 %