Skip to content

dmscul11/EMS-Prediction

Repository files navigation

EMS-Prediction

EMS Motion Data Visual Analytics

######################################################################################## ######################################################################################## ########################################################################################

USAGE INFORMATION:

Versions: python v3.6.3, D3 v5.9.2, safari v12.1, chrome v73

Report: VAML_Project_Report.pdf

  1. Download /dashboard-d3 entire directory ONLY (this includes the data in it)
  2. In terminal navigate into /dashboard-d3 directory
  3. Execute: python3 -m http.server
  4. Open either safari or google chrome and clear cache
  5. In broser navigate to: http://0.0.0.0:8000/
  6. Click and interacte with dashboard

######################################################################################## ######################################################################################## ########################################################################################

GitHub: https://github.com/dmscul11/EMS-Prediction

Box for Original Data: https://vanderbilt.app.box.com/folder/66875332205

Python Background Server for D3: python3 -m http.server http://0.0.0.0:8000/

Tinker for CNN: /home/scullydm/DoDHandsFree/ (use python3.6, pip3.6): nohup python3.6 combined_NN.py &

combined-d3:

  • both squares D3 implementation

dashboard-d3:

  • final squares and dashboard D3 implementation

tree-d3:

  • Tree D3 implementation

squares-d3:

  • Squares D3 implementation

stacks-d3:

  • Squares and Tree combined D3 implementation

Main Code:

  • ***read_processed_data.py = Main function to read in processed data and run ML random forest

  • visualizations.py = Main function to read in ML output and create visualizations**************

  • combined_NN.py = Main function to read in processed imputated data and run CNN

      --> input from combined-data
      
      --> Update params in main() function, lines 165 - 167
    

Parse and Combine Data Code (Run just once, UNLESS EVENTS TIMING HAS CHANGED OR MORE DATA ADDED):

  • imputate_data_small.py (combine_data.py) = Main function to read in processed data and output imputation to small row size and wrap the rest --> input from processed-data --> Update params in main() function, lines 242-248
  • imputate_data_large.py (combine_data.py) = Main function to read in processed data and output imputation to max row size --> input from processed-data --> Update params in main() function, lines 242-248
  • parse_data_files.py = preprocess raw data and split data into individual csvs by event files info and data collection --> input from raw-data and event-files

Run Once Code:

  • combine_data.py = Main function to read in processed data, combine and preprocess data, and run Neural Network
  • handheatmap_script_NNData.py = generates csv files from openpose output
  • analyze-watchdata-separate-events.py = generate basic plots of apple watch data
  • limbs_randomforest.py = run random forest predictor on openpose data
  • parse_data_files.py = preprocess and split data into csvs by procedure and data collection

Combined-Data:

  • csv imputated data files of all same size and all data types by experiment, participant, event, trail #, time zeroed out
  • input to combined_NN
  • output from imputate_data.py combining data type
  • generated from processed-data

Processed-Data:

  • csv files of data time specific to experiment, participant, event, trial #, timestamp, data type
  • input to imputate_data.py
  • output from parse_data_files.py
  • generated from raw-data

raw-data:

  • csv files of data time specific to experiment, participant, and data type
  • generated from SQL pulls (apple watch) or from Box (MYO) or AWS (video and open pose output)

Event-Files:

  • procedure event details csv files for data for each experiment and participant

About

EMS Motion Data Procedure Prediction

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published