Skip to content

Commit

Permalink
Update the documentation
Browse files Browse the repository at this point in the history
  • Loading branch information
rlouf committed Dec 7, 2023
1 parent c2b2a9c commit 46299fe
Show file tree
Hide file tree
Showing 5 changed files with 40 additions and 64 deletions.
80 changes: 29 additions & 51 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -83,34 +83,21 @@ is to ensure that there is a well-defined interface between their output and
user-defined code. **Outlines** provides ways to control the generation of
language models to make their output more predictable.

### Early stopping

You can stop the generation after a given sequence has been found:

``` python
import outlines.text.generate as generate
import outlines.models as models

model = models.transformers("gpt2")
answer = generate.continuation(model, stop=["."])("Tell me a one-sentence joke.")
```

### Multiple choices

You can reduce the completion to a choice between multiple possibilities:

``` python
import outlines.text.generate as generate
import outlines.models as models
import outlines

model = models.transformers("gpt2")
model = outlines.models.transformers("gpt2")

prompt = """You are a sentiment-labelling assistant.
Is the following review positive or negative?
Review: This restaurant is just awesome!
"""
answer = generate.choice(model, ["Positive", "Negative"])(prompt)
answer = outlines.generate.choice(model, ["Positive", "Negative"])(prompt)
```

### Type constraint
Expand All @@ -119,16 +106,15 @@ You can instruct the model to only return integers or floats:


``` python
import outlines.text.generate as generate
import outlines.models as models
import outlines

model = models.transformers("gpt2")
model = outlines.models.transformers("gpt2")

prompt = "1+1="
answer = generate.integer(model)(prompt)
answer = outlines.generate.format(model, int)(prompt)

prompt = "sqrt(2)="
answer = generate.float(model)(prompt)
answer = outlines.generate.format(model, float)(prompt)
```

### Efficient regex-guided generation
Expand All @@ -138,15 +124,13 @@ Outlines also comes with fast regex-guided generation. In fact, the `choice`,
hood:

``` python
import outlines.models as models
import outlines.text.generate as generate
import outlines


model = models.transformers("gpt2-medium")
model = outlines.models.transformers("gpt2-medium")

prompt = "Is 1+1=2? "
unguided = generate.continuation(model, max_tokens=30)(prompt)
guided = generate.regex(model, r"\s*([Yy]es|[Nn]o|[Nn]ever|[Aa]lways)", max_tokens=30)(
unguided = outlines.generate.continuation(model, max_tokens=30)(prompt)
guided = outlines.generate.regex(model, r"\s*([Yy]es|[Nn]o|[Nn]ever|[Aa]lways)", max_tokens=30)(
prompt
)

Expand All @@ -162,15 +146,13 @@ print(guided)
```

``` python
import outlines.models as models
import outlines.text.generate as generate

import outlines

model = models.transformers("gpt2-medium")
model = outlines.models.transformers("gpt2-medium")

prompt = "What is the IP address of the Google DNS servers? "
unguided = generate.continuation(model, max_tokens=30)(prompt)
guided = generate.regex(
guided = outlines.generate.regex(
model,
r"((25[0-5]|2[0-4]\d|[01]?\d\d?)\.){3}(25[0-5]|2[0-4]\d|[01]?\d\d?)",
max_tokens=30,
Expand Down Expand Up @@ -199,9 +181,7 @@ Outlines 〰 allows to guide the generation process so the output is *guaranteed
from enum import Enum
from pydantic import BaseModel, constr

import outlines.models as models
import outlines.text.generate as generate

import outlines
import torch


Expand All @@ -228,10 +208,10 @@ class Character(BaseModel):
strength: int


model = models.transformers("gpt2", device="cuda")
model = outlines.models.transformers("gpt2", device="cuda")

# Construct guided sequence generator
generator = generate.json(model, Character, max_tokens=100)
generator = outlines.generate.json(model, Character, max_tokens=100)

# Draw a sample
rng = torch.Generator(device="cuda")
Expand Down Expand Up @@ -269,14 +249,14 @@ The method works with union types, optional types, arrays, nested schemas, etc.
Outlines can infer the structure of the output from the signature of a function. The result is a dictionary, and can be passed directly to the function using the usual dictionary expansion syntax `**`:

```python
from outlines import models
from outlines import text
import outlines


def add(a: int, b: int):
return a + b

model = models.transformers("mistralai/Mistral-7B")
generator = text.generate.json(model, add)
model = outlines.models.transformers("mistralai/Mistral-7B")
generator = outlines.generate.json(model, add)
result = generator("Return two integers named a and b respectively. a is odd and b even.")

print(add(**result))
Expand All @@ -300,9 +280,7 @@ Template functions require no superfluous abstraction, they use the Jinja2
templating engine to help build complex prompts in a concise manner:

``` python
import outlines.text as text
import outlines.models as models

import outlines

examples = [
("The food was digusting", "Negative"),
Expand All @@ -311,7 +289,7 @@ examples = [
("The waiter was rude", "Negative")
]

@text.prompt
@outlines.prompt
def labelling(to_label, examples):
"""You are a sentiment-labelling assistant.
Expand All @@ -321,9 +299,9 @@ def labelling(to_label, examples):
{{ to_label }} //
"""

model = models.transformers("gpt2")
model = outlines.models.transformers("gpt2")
prompt = labelling("Just awesome", examples)
answer = text.generate.continuation(model, max_tokens=100)(prompt)
answer = outlines.generate.continuation(model, max_tokens=100)(prompt)
```

### Tools
Expand All @@ -337,7 +315,7 @@ extract the function's name, description, signature and source:

``` python
from typing import Callable, List
import outlines.text as text
import outlines


def google_search(query: str):
Expand All @@ -350,7 +328,7 @@ def wikipedia_search(query: str):
pass


@text.prompt
@outlines.prompt
def my_commands(tools: List[Callable]):
"""AVAILABLE COMMANDS:
Expand All @@ -374,7 +352,7 @@ extract the expected response's schema:

``` python
from pydantic import BaseModel, Field
import outlines.text as text
import outlines


class Joke(BaseModel):
Expand All @@ -384,7 +362,7 @@ class Joke(BaseModel):
)


@text.prompt
@outlines.prompt
def joke_ppt(response_model):
"""Tell a joke and explain why the joke is funny.
Expand Down
10 changes: 4 additions & 6 deletions docs/examples/chain_of_density.md
Original file line number Diff line number Diff line change
Expand Up @@ -29,9 +29,9 @@ The prompt also asks the model to return a list of JSON objects that contain the
We can now implement the prompt provided in the paper:

```python
from outlines import text
import outlines

@text.prompt
@outlines.prompt
def chain_of_density(article):
"""Article: {{ article }}
Expand Down Expand Up @@ -86,12 +86,10 @@ class Summaries(BaseModel):
We now generate the prompt by passing the article we want to summarize to the template. We load a quantized version of Mistral-7B using the AutoAWQ library, and then use JSON-guided generation to generate the summaries:

```python
from outlines import models

model = models.awq("TheBloke/Mistral-7B-OpenOrca-AWQ")
model = outlines.models.awq("TheBloke/Mistral-7B-OpenOrca-AWQ")

prompt = chain_of_density(article)
result = text.generate.json(model, Summaries)(prompt)
result = outlines.generate.json(model, Summaries)(prompt)
```

We can now check the results:
Expand Down
9 changes: 4 additions & 5 deletions docs/examples/dating_profiles.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,8 +10,7 @@ import torch
import transformers
from pydantic import BaseModel, conlist, constr

import outlines.models as models
import outlines.text as text
import outlines
```

## Defining the profile with Pydantic
Expand Down Expand Up @@ -59,7 +58,7 @@ We will use Outlines' prompt templating abilities to generate the prompt for us.

```python

@text.prompt
@outlines.prompt
def dating_profile_prompt(description: str, examples: list[Example]):
"""
You are a world-renowned matchmaker who understands the modern dating
Expand Down Expand Up @@ -136,7 +135,7 @@ config = transformers.AutoConfig.from_pretrained(
"mosaicml/mpt-7b-8k-instruct", trust_remote_code=True
)
config.init_device = "meta"
model = models.transformers(
model = outlines.models.transformers(
model_name="mosaicml/mpt-7b-8k-instruct",
device="cuda",
model_kwargs={
Expand All @@ -163,7 +162,7 @@ it's a good excuse for a date. I watch the latest series because I'm paying,
with my hard-earned money, for every streaming service."""

prompt = dating_profile_prompt(new_description, samples)
profile = text.generate.json(model, DatingProfile)(prompt)
profile = outlines.generate.json(model, DatingProfile)(prompt)
parsed_profile = DatingProfile.model_validate_json(profile)
```

Expand Down
1 change: 1 addition & 0 deletions outlines/__init__.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
"""Outlines is a Generative Model Programming Framework."""
import outlines.generate
import outlines.models
import outlines.text.generate
from outlines.base import vectorize
from outlines.caching import clear_cache, disable_cache, get_cache
Expand Down
4 changes: 2 additions & 2 deletions outlines/models/openai.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@

import numpy as np

import outlines
from outlines.base import vectorize
from outlines.caching import cache

__all__ = ["OpenAI", "openai"]
Expand Down Expand Up @@ -282,7 +282,7 @@ def __repr__(self):


@cache(ignore="client")
@functools.partial(outlines.vectorize, signature="(),(),(),()->(s),()")
@functools.partial(vectorize, signature="(),(),()->(s)")
async def generate_chat(
prompt: str,
system_prompt: Union[str, None],
Expand Down

0 comments on commit 46299fe

Please sign in to comment.