Skip to content

Collection of methods for numerical analysis and scientific computing, including numerical root-finders, numerical integration, linear algebra, and data visualization. Created for APPM4600 at CU Boulder.

Notifications You must be signed in to change notification settings

dreamchef/numerical-analysis-methods

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ad6cb86 · Apr 9, 2024

History

86 Commits
Apr 9, 2024
Mar 4, 2024
Apr 9, 2024
Mar 4, 2024
Mar 4, 2024
Feb 20, 2024
Feb 23, 2024
Apr 2, 2024
Mar 12, 2024
Mar 12, 2024
Mar 12, 2024
Mar 12, 2024
Mar 7, 2024
Mar 8, 2024
Feb 27, 2024
Mar 7, 2024
Mar 12, 2024
Mar 8, 2024
Mar 8, 2024
Mar 12, 2024
Mar 4, 2024
Mar 12, 2024
Mar 8, 2024

Repository files navigation

Scientific Computing and Numerical Analysis Methods

License: MIT GitHub last commit

Collection of methods for numerical analysis and scientific computing, including numerical root-finders, numerical integration, linear algebra, and data visualization.

Linear Algebra

Dot Product

from linearAlgebra import *

n = 2
y = [1,0]
w = [0,1]

dp = dotProduct(y,w,n)
print('the dot product is : ', dp)

Output:

the dot product is :  0.0

Matrix-Vector Multiplication

from linearAlgebra import *

n = 2
mat = [[1,0],[0,1]]
vec = [0,1]

prod = matVecMult(mat,vec,n)
print('the product is : ', prod)

Output:

the product is :  [0.0, 1.0]

Rooting-Finding: Numerical Solvers

Contained in solvers.py

Fixed Point Iteration

from solvers import *
from visualization import *

f = lambda x: x**2

vec = fixedptVec(f, 0.5, 0.001, 100) # function, start point, tolerance, max iterations

printFloatVec(vec,spacing=2) # improved list print function (see below)

Output:

--------------------
f(x) = lambda x: x**2, 

Fixed point iteration:
0.25           0.0625         0.00391        1.53e-05       2.33e-10     

Additional solvers include:

  • Bisection
  • Newton's Method
  • Hybrid Bisection -> Newton solver (in progress)

Visualization Methods

Print Vector

from solvers import *
from visualization import *

f_vec = [
    lambda x: x**2,
    lambda x: x**2 - x**4
]

for f in f_vec: # loop through functions and compute roots

    print('-'*20)
    print(lambdaToString(f),'\n')

    print("Fixed point iteration:")
    vec = fixedptVec(f, 0.5, 0.001, 100)

	printFloatVec(vec,precision=3,spacing=2,newLine=True)

Output:

--------------------
f(x) = lambda x: x**2, 

Fixed point iteration:
0.25           0.0625         0.00391        1.53e-05       2.33e-10     

--------------------
f(x) = lambda x: x**2 - x**4 

Fixed point iteration:
0.188          0.0339         0.00115        1.32e-06       1.74e-12     

Created for work in APPM4600 at University of Colorado Boulder.