Skip to content

Commit

Permalink
Merge pull request #830 from timothy-glover/modify_regulariser
Browse files Browse the repository at this point in the history
Regulariser amendment and implementation in ParticleUpdater
  • Loading branch information
sdhiscocks authored Aug 30, 2023
2 parents 9fc8dff + 465b167 commit 0c6ca88
Show file tree
Hide file tree
Showing 6 changed files with 199 additions and 68 deletions.
2 changes: 2 additions & 0 deletions stonesoup/predictor/particle.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,6 +54,7 @@ def predict(self, prior, timestamp=None, **kwargs):
**kwargs)

return Prediction.from_state(prior,
parent=prior,
state_vector=new_state_vector,
timestamp=timestamp,
transition_model=self.transition_model)
Expand Down Expand Up @@ -341,6 +342,7 @@ def predict(self, prior, timestamp=None, **kwargs):
existence_probability=predicted_existence,
parent=untransitioned_state,
timestamp=timestamp,
transition_model=self.transition_model
)
return new_particle_state

Expand Down
51 changes: 32 additions & 19 deletions stonesoup/regulariser/particle.py
Original file line number Diff line number Diff line change
@@ -1,10 +1,13 @@
import copy
import numpy as np
from scipy.stats import multivariate_normal, uniform
from typing import Sequence

from .base import Regulariser
from ..functions import cholesky_eps
from ..types.state import ParticleState
from ..models.transition import TransitionModel
from ..base import Property


class MCMCRegulariser(Regulariser):
Expand All @@ -14,7 +17,7 @@ class MCMCRegulariser(Regulariser):
of effectiveness. Sometimes this is not desirable, or possible, when a particular algorithm
requires the introduction of new samples as part of the filtering process for example.
This is a particlar implementation of a MCMC move step that uses the Metropolis-Hastings
This is a particular implementation of a MCMC move step that uses the Metropolis-Hastings
algorithm [1]_. After resampling, particles are moved a small amount, according do a Gaussian
kernel, to a new state only if the Metropolis-Hastings acceptance probability is met by a
random number assigned to each particle from a uniform random distribution, otherwise they
Expand All @@ -24,21 +27,21 @@ class MCMCRegulariser(Regulariser):
----------
.. [1] Robert, Christian P. & Casella, George, Monte Carlo Statistical Methods, Springer, 1999.
.. [2] Ristic, Branco & Arulampalam, Sanjeev & Gordon, Neil, Beyond the Kalman Filter:
.. [2] Ristic, Branko & Arulampalam, Sanjeev & Gordon, Neil, Beyond the Kalman Filter:
Particle Filters for Target Tracking Applications, Artech House, 2004. """

def regularise(self, prior, posterior, detections):
transition_model: TransitionModel = Property(doc="Transition model used for prediction",
default=None)

def regularise(self, prior, posterior):
"""Regularise the particles
Parameters
----------
prior : :class:`~.ParticleState` type or list of :class:`~.Particle`
prior particle distribution
posterior : :class:`~.ParticleState` type or list of :class:`~.Particle`
posterior particle distribution
detections : set of :class:`~.Detection`
set of detections containing clutter,
true detections or both
prior : :class:`~.ParticleState` type
prior particle distribution.
posterior : :class:`~.ParticleState` type
posterior particle distribution.
Returns
-------
Expand All @@ -47,15 +50,27 @@ def regularise(self, prior, posterior, detections):
"""

if not isinstance(posterior, ParticleState):
posterior = ParticleState(None, particle_list=posterior)
raise TypeError('Only ParticleState type is supported!')

if not isinstance(prior, ParticleState):
prior = ParticleState(None, particle_list=prior)
raise TypeError('Only ParticleState type is supported!')

regularised_particles = copy.copy(posterior)
moved_particles = copy.copy(posterior)
transitioned_prior = copy.copy(prior)

hypotheses = posterior.hypothesis if isinstance(posterior.hypothesis, Sequence) \
else [posterior.hypothesis]

transition_model = hypotheses[0].prediction.transition_model or self.transition_model
if transition_model is not None:
time_interval = posterior.timestamp - prior.timestamp
transitioned_prior.state_vector = \
transition_model.function(prior, noise=False, time_interval=time_interval)

detections = {hypothesis.measurement for hypothesis in hypotheses if hypothesis}

if detections is not None:
if detections:
ndim = prior.state_vector.shape[0]
nparticles = len(posterior)

Expand All @@ -70,13 +85,11 @@ def regularise(self, prior, posterior, detections):
hopt * cholesky_eps(covar_est) @ np.random.randn(ndim, nparticles)

# Evaluate likelihoods
part_diff = moved_particles.state_vector - prior.state_vector
part_diff_mean = np.average(part_diff, axis=1)
move_likelihood = multivariate_normal.logpdf((part_diff - part_diff_mean).T,
part_diff = moved_particles.state_vector - transitioned_prior.state_vector
move_likelihood = multivariate_normal.logpdf(part_diff.T,
cov=covar_est)
post_part_diff = posterior.state_vector - prior.state_vector
post_part_diff_mean = np.average(post_part_diff, axis=1)
post_likelihood = multivariate_normal.logpdf((post_part_diff - post_part_diff_mean).T,
post_part_diff = posterior.state_vector - transitioned_prior.state_vector
post_likelihood = multivariate_normal.logpdf(post_part_diff.T,
cov=covar_est)

# Evaluate measurement likelihoods
Expand Down
82 changes: 61 additions & 21 deletions stonesoup/regulariser/tests/test_particle.py
Original file line number Diff line number Diff line change
@@ -1,17 +1,37 @@
import numpy as np
import datetime
import pytest

from ...types.state import ParticleState
from ...types.particle import Particle
from ...types.hypothesis import SingleHypothesis
from ...types.prediction import ParticleStatePrediction, ParticleMeasurementPrediction
from ...models.measurement.linear import LinearGaussian
from ...models.transition.linear import CombinedLinearGaussianTransitionModel, ConstantVelocity
from ...types.detection import Detection
from ...types.update import ParticleStateUpdate
from ...types.update import Update, ParticleStateUpdate
from ..particle import MCMCRegulariser


def test_regulariser():
@pytest.mark.parametrize(
"transition_model, model_flag",
[
(
CombinedLinearGaussianTransitionModel([ConstantVelocity([0.05])]), # transition_model
False, # model_flag
),
(
CombinedLinearGaussianTransitionModel([ConstantVelocity([0.05])]), # transition_model
True, # model_flag
),
(
None, # transition_model
False, # model_flag
)
],
ids=["with_transition_model_init", "without_transition_model_init", "no_transition_model"]
)
def test_regulariser(transition_model, model_flag):
particles = ParticleState(state_vector=None, particle_list=[Particle(np.array([[10], [10]]),
1 / 9),
Particle(np.array([[10], [20]]),
Expand All @@ -32,34 +52,54 @@ def test_regulariser():
1 / 9),
])
timestamp = datetime.datetime.now()
prediction = ParticleStatePrediction(None, particle_list=particles.particle_list,
timestamp=timestamp)
meas_pred = ParticleMeasurementPrediction(None, particle_list=particles, timestamp=timestamp)
if transition_model is not None:
new_state_vector = transition_model.function(particles,
noise=True,
time_interval=datetime.timedelta(seconds=1))
else:
new_state_vector = particles.state_vector

prediction = ParticleStatePrediction(new_state_vector,
timestamp=timestamp,
transition_model=transition_model)

measurement_model = LinearGaussian(ndim_state=2, mapping=(0, 1), noise_covar=np.eye(2))
measurement = [Detection(state_vector=np.array([[5], [7]]),
timestamp=timestamp, measurement_model=measurement_model)]
state_update = ParticleStateUpdate(None, SingleHypothesis(prediction=prediction,
measurement=measurement,
measurement_prediction=meas_pred),
particle_list=particles.particle_list, timestamp=timestamp)
regulariser = MCMCRegulariser()
measurement = Detection(state_vector=np.array([[5], [7]]),
timestamp=timestamp, measurement_model=measurement_model)
hypothesis = SingleHypothesis(prediction=prediction,
measurement=measurement,
measurement_prediction=None)

state_update = Update.from_state(state=prediction,
hypothesis=hypothesis,
timestamp=timestamp+datetime.timedelta(seconds=1))
# A PredictedParticleState is used here as the point at which the regulariser is implemented
# in the updater is before the updated state has taken the updated state type.
state_update.weight = np.array([1/6, 5/48, 5/48, 5/48, 5/48, 5/48, 5/48, 5/48, 5/48])

if model_flag:
regulariser = MCMCRegulariser()
else:
regulariser = MCMCRegulariser(transition_model=transition_model)

# state check
new_particles = regulariser.regularise(particles, state_update, measurement)
new_particles = regulariser.regularise(prediction, state_update)
# Check the shape of the new state vector
assert new_particles.state_vector.shape == state_update.state_vector.shape
# Check weights are unchanged
assert any(new_particles.weight == state_update.weight)
# Check that the timestamp is the same
assert new_particles.timestamp == state_update.timestamp

# list check
new_particles = regulariser.regularise(particles.particle_list, state_update.particle_list,
measurement)
# Check the shape of the new state vector
assert new_particles.state_vector.shape == state_update.state_vector.shape
# Check weights are unchanged
assert any(new_particles.weight == state_update.weight)
# list check3
with pytest.raises(TypeError) as e:
new_particles = regulariser.regularise(particles.particle_list,
state_update)
assert "Only ParticleState type is supported!" in str(e.value)
with pytest.raises(Exception) as e:
new_particles = regulariser.regularise(particles,
state_update.particle_list)
assert "Only ParticleState type is supported!" in str(e.value)


def test_no_measurement():
Expand Down Expand Up @@ -92,7 +132,7 @@ def test_no_measurement():
particle_list=particles.particle_list, timestamp=timestamp)
regulariser = MCMCRegulariser()

new_particles = regulariser.regularise(particles, state_update, detections=None)
new_particles = regulariser.regularise(particles, state_update)

# Check the shape of the new state vector
assert new_particles.state_vector.shape == state_update.state_vector.shape
Expand Down
12 changes: 6 additions & 6 deletions stonesoup/types/multihypothesis.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
from collections.abc import Sized, Iterable, Container
from typing import Sequence
from collections.abc import Sequence
import typing

from .detection import MissedDetection
from .numeric import Probability
Expand All @@ -10,13 +10,13 @@
from ..types.prediction import Prediction


class MultipleHypothesis(Type, Sized, Iterable, Container):
class MultipleHypothesis(Type, Sequence):
"""Multiple Hypothesis base type
A Multiple Hypothesis is a container to store a collection of hypotheses.
"""

single_hypotheses: Sequence[SingleHypothesis] = Property(
single_hypotheses: typing.Sequence[SingleHypothesis] = Property(
default=None,
doc="The initial list of :class:`~.SingleHypothesis`. Default `None` "
"which initialises with empty list.")
Expand Down Expand Up @@ -119,7 +119,7 @@ def get_missed_detection_probability(self):
return None


class MultipleCompositeHypothesis(Type, Sized, Iterable, Container):
class MultipleCompositeHypothesis(Type, Sequence):
"""Multiple composite hypothesis type
A Multiple Composite Hypothesis is a container to store a collection of composite hypotheses.
Expand All @@ -128,7 +128,7 @@ class MultipleCompositeHypothesis(Type, Sized, Iterable, Container):
redefined.
"""

single_hypotheses: Sequence[CompositeHypothesis] = Property(
single_hypotheses: typing.Sequence[CompositeHypothesis] = Property(
default=None,
doc="The initial list of :class:`~.CompositeHypothesis`. Default `None` which initialises "
"with empty list.")
Expand Down
42 changes: 22 additions & 20 deletions stonesoup/updater/particle.py
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,12 @@ def update(self, hypothesis, **kwargs):
: :class:`~.ParticleState`
The state posterior
"""
predicted_state = copy.copy(hypothesis.prediction)

predicted_state = Update.from_state(
state=hypothesis.prediction,
hypothesis=hypothesis,
timestamp=hypothesis.prediction.timestamp
)

if hypothesis.measurement.measurement_model is None:
measurement_model = self.measurement_model
Expand All @@ -65,13 +70,12 @@ def update(self, hypothesis, **kwargs):
if self.resampler is not None:
predicted_state = self.resampler.resample(predicted_state)

return Update.from_state(
state=hypothesis.prediction,
state_vector=predicted_state.state_vector,
log_weight=predicted_state.log_weight,
hypothesis=hypothesis,
timestamp=hypothesis.measurement.timestamp,
)
if self.regulariser is not None:
prior = hypothesis.prediction.parent
predicted_state = self.regulariser.regularise(prior,
predicted_state)

return predicted_state

@lru_cache()
def predict_measurement(self, state_prediction, measurement_model=None,
Expand Down Expand Up @@ -414,8 +418,12 @@ def update(self, hypotheses, **kwargs):
# copy prediction
prediction = hypotheses.single_hypotheses[0].prediction

updated_state = copy.copy(prediction)

# updated_state = copy.copy(prediction)
updated_state = Update.from_state(
state=prediction,
hypothesis=hypotheses,
timestamp=prediction.timestamp
)
if any(hypotheses):
detections = [single_hypothesis.measurement
for single_hypothesis in hypotheses.single_hypotheses]
Expand Down Expand Up @@ -463,16 +471,10 @@ def update(self, hypotheses, **kwargs):
if any(hypotheses):
# Regularisation
if self.regulariser is not None:
regularised_parts = self.regulariser.regularise(updated_state.parent,
updated_state,
detections)
updated_state.state_vector = regularised_parts.state_vector

return Update.from_state(
updated_state,
timestamp=updated_state.timestamp,
hypothesis=hypotheses,
)
updated_state = self.regulariser.regularise(updated_state.parent,
updated_state)

return updated_state

@staticmethod
def _log_space_product(A, B):
Expand Down
Loading

0 comments on commit 0c6ca88

Please sign in to comment.