Skip to content

Commit

Permalink
Merge pull request #844 from dstl/fix_non_linear_constant_turn
Browse files Browse the repository at this point in the history
Fix non linear constant turn transition model
  • Loading branch information
sdhiscocks authored Sep 1, 2023
2 parents f99986f + bc01e20 commit ce21704
Show file tree
Hide file tree
Showing 2 changed files with 11 additions and 14 deletions.
6 changes: 3 additions & 3 deletions docs/tutorials/01_KalmanFilterTutorial.py
Original file line number Diff line number Diff line change
Expand Up @@ -273,8 +273,8 @@
# ^^^^^^^^^^^^^^^^^^^^^^^^^
#
# We're now ready to build a tracker. We'll use a Kalman filter as it's conceptually the simplest
# to start with. The Kalman filter is described extensively elsewhere [#]_, [#]_, so for the
# moment we just assert that the prediction step proceeds as:
# to start with. The Kalman filter is described extensively elsewhere [#]_:math:`^,` [#]_,
# so for the moment we just assert that the prediction step proceeds as:
#
# .. math::
# \mathbf{x}_{k|k-1} &= F_{k}\mathbf{x}_{k-1} + B_{k}\mathbf{u}_{k}\\
Expand Down Expand Up @@ -303,7 +303,7 @@
# responsibility, a :class:`~.Predictor` takes a :class:`~.TransitionModel` as input and
# an :class:`~.Updater` takes a :class:`~.MeasurementModel` as input. Note that for now we're using
# the same models used to generate the ground truth and the simulated measurements. This won't
# usually be possible and it's an interesting exercise to explore what happens when these
# usually be possible, and it's an interesting exercise to explore what happens when these
# parameters are mismatched.
from stonesoup.predictor.kalman import KalmanPredictor
predictor = KalmanPredictor(transition_model)
Expand Down
19 changes: 8 additions & 11 deletions stonesoup/models/transition/nonlinear.py
Original file line number Diff line number Diff line change
Expand Up @@ -67,16 +67,11 @@ class ConstantTurn(GaussianTransitionModel, TimeVariantModel):
.. math::
Q_t & = & \begin{bmatrix}
\frac{dt^4q_x^2}{4} & \frac{dt^3q_x^2}{2} & \frac{dt^4q_xq_y}{4} &
\frac{dt^3q_xq_y}{2} & \frac{dt^2q_xq_\omega}{2} \\
\frac{dt^3q_x^2}{2} & dt^2q_x^2 & \frac{dt^3q_xq_y}{2} & dt^2q_xq_y &
dt q_x q_\omega \\
\frac{dt^4q_xq_y}{4} & \frac{dt^3q_xq_y}{2} & \frac{dt^4q_y^2}{4} &
\frac{dt^3q_y^2}{2} & \frac{dt^2q_y q_\omega}{2} \\
\frac{dt^3q_x q_y}{2} & dt^2q_xq_y & \frac{dt^3q_y^2}{2} &
dt^2q_y^2 & dt q_y q_\omega \\
\frac{dt^2q_xq_\omega}{2} & dtq_xq_\omega & \frac{dt^2q_yq_\omega}{2} &
dt q_y q_\omega & q_\omega^2
\frac{dt^3q_x^2}{3} & \frac{dt^2q_x^2}{2} & 0 & 0 & 0 \\
\frac{dt^2q_x^2}{2} & dtq_x^2 & 0 & 0 & 0 \\
0 & 0 & \frac{dt^3q_y^2}{3} & \frac{dt^2q_y^2}{2} & 0 \\
0 & 0 & \frac{dt^2q_y^2}{2} & dtq_y^2 & 0 \\
0 & 0 & 0 & 0 & q_\omega^2
\end{bmatrix}
"""
linear_noise_coeffs: np.ndarray = Property(
Expand All @@ -100,6 +95,8 @@ def function(self, state, noise=False, **kwargs) -> StateVector:
sv1 = state.state_vector
turn_rate = sv1[4, :]
# Avoid divide by zero in the function evaluation
if turn_rate.dtype != float:
turn_rate = turn_rate.astype(float)
turn_rate[turn_rate == 0.] = np.finfo(float).eps
dAngle = turn_rate * time_interval_sec
cos_dAngle = np.cos(dAngle)
Expand Down Expand Up @@ -134,7 +131,7 @@ def covar(self, time_interval, **kwargs):

Q = np.array([[dt**3 / 3., dt**2 / 2.],
[dt**2 / 2., dt]])
C = block_diag(Q*q_x**2, Q*q_y**2, q**2/dt)
C = block_diag(Q*q_x**2, Q*q_y**2, q**2)

return CovarianceMatrix(C)

Expand Down

0 comments on commit ce21704

Please sign in to comment.