Skip to content

duckworthd/yannopt

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

33 Commits
 
 
 
 
 
 
 
 

Repository files navigation

=======
yannopt
=======

Optimization algorithms. Lots of them. This is a work in progress -- use at
your own risk of numerical underflow.

========
Examples
========

    >>> from yannopt.optimizers import LBFGS
    >>> from yannopt.learning_rates import BacktrackingLineSearch
    >>> from yannopt.stopping_criteria import MaxIterations
    >>> from yannopt.testing import check_optimizer
    >>> from yannopt.testing import problems
    >>> 
    >>> 
    >>> class Optimizer(BacktrackingLineSearch, MaxIterations, LBFGS):
    >>>   def __init__(self, n_iter):
    >>>     BacktrackingLineSearch.__init__(self, a=0.5)
    >>>     MaxIterations.__init__(self, n_iter)
    >>>     LBFGS.__init__(self, k=2)
    >>> 
    >>> # Define objective function
    >>> A = np.array([[1.0, 0.5, 0.0],
    >>>               [0.5, 1.0, 0.5],
    >>>               [0.0, 0.5, 1.0]])
    >>> b = np.array([1.0, 2.0, 3.0])
    >>> objective = f.Quadratic(A, b)
    >>> 
    >>> # Define problem (objective + constraints)
    >>> problem   = minimize(objective)
    >>> x0        = np.zeros(len(b))
    >>>
    >>> # Optimize!
    >>> optimizer = Optimizer(20)
    >>> solution  = optimizer.optimize(problem, x0)
    >>> print 'The minimizer of f(x) = 0.5 x'Ax - b is %s'.format(solution.x)

About

Optimization Algorithms in Python

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages