- Optimized Product Quantization[2]--2020-11-15
- Product Quantization for Nearest Neighbor Search[4]--2020-10-31
- papers to read--2020-10-27
- Video Google: A Text Retrieval Approach to Object Matching in Videos[3]--2020-10-04
- ModelHub: Lifecycle Management for Deep Learning[4]--2020-09-20
显示更多
- Fiber: A Platform for Efficient Development and Distributed Training for Reinforcement Learning and Population-Based Methods--2020-08-16
- Automatically Tracking Metadata and Provenance of Machine Learning Experiments--2020-08-08
- Data Management Challenges in Production Machine Learning[3]--2020-07-14
- Goods: Organizing Google's Datasets[4]--2020-06-25
- Autopilot: workload autoscaling at Google[5]--2020-06-20
- A Review of Auto-scaling Techniques for Elastic Applications in Cloud Environments--2020-02-14
- DEEP COMPRESSION: COMPRESSING DEEP NEURAL NETWORKS WITH PRUNING, TRAINED QUANTIZATION AND HUFFMAN CODING--2019-10-07
- Compressing Neural Networks with the Hashing Trick--2019-10-05
- Feature Hashing for Large Scale Multitask Learning--2019-10-05
- TensorFlow Estimators: Managing Simplicity vs. Flexibility in High-Level Machine Learning Frameworks[5]--2019-09-01
- Accelerating Large Scale Deep Learning Inference through DeepCPU at Microsoft--2019-06-26
- Deep Learning Inference Service at Microsoft--2019-06-11
- Scaling Machine Learning as a Service--2019-04-24
- Deep Learning Inference in Facebook Data Centers: Characterization, Performance Optimizations and Hardware Implications--2019-01-13
- Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective--2018-11-17
- Autopilot: workload autoscaling at Google[5]--2020-06-20
- A Review of Auto-scaling Techniques for Elastic Applications in Cloud Environments--2020-02-14
- Automatically Tracking Metadata and Provenance of Machine Learning Experiments--2020-08-08
- Data Management Challenges in Production Machine Learning[3]--2020-07-14
- Accelerating Large Scale Deep Learning Inference through DeepCPU at Microsoft--2019-06-26
- Deep Learning Inference Service at Microsoft--2019-06-11
- Deep Learning Inference in Facebook Data Centers: Characterization, Performance Optimizations and Hardware Implications--2019-01-13
- Automatically Tracking Metadata and Provenance of Machine Learning Experiments--2020-08-08
- Scaling Machine Learning as a Service--2019-04-24
- Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective--2018-11-17
- ModelHub: Lifecycle Management for Deep Learning[4]--2020-09-20
- Automatically Tracking Metadata and Provenance of Machine Learning Experiments--2020-08-08
- Goods: Organizing Google's Datasets[4]--2020-06-25
- DEEP COMPRESSION: COMPRESSING DEEP NEURAL NETWORKS WITH PRUNING, TRAINED QUANTIZATION AND HUFFMAN CODING--2019-10-07
- Compressing Neural Networks with the Hashing Trick--2019-10-05
- Feature Hashing for Large Scale Multitask Learning--2019-10-05
- Optimized Product Quantization[2]--2020-11-15
- Product Quantization for Nearest Neighbor Search[4]--2020-10-31
- Video Google: A Text Retrieval Approach to Object Matching in Videos[3]--2020-10-04
- TensorFlow Estimators: Managing Simplicity vs. Flexibility in High-Level Machine Learning Frameworks[5]--2019-09-01
TODO list from papers to read--1 jobs to do--0 jobs done
- Helios: hyperscale indexing for the cloud & edge