Skip to content

Commit

Permalink
Deploying to gh-pages from @ 2c74d86 🚀
Browse files Browse the repository at this point in the history
  • Loading branch information
cgerum committed Nov 18, 2024
1 parent 2d99146 commit 550d6eb
Show file tree
Hide file tree
Showing 4 changed files with 79 additions and 17 deletions.
92 changes: 77 additions & 15 deletions development/devel/api/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -1386,6 +1386,9 @@ <h4 id="resnetrs420_mc_dropout">resnetrs420_mc_dropout</h4>
Pretrained weights from https://github.com/tensorflow/tpu/tree/bee9c4f6/models/official/resnet/resnet_rs</p>
<p><a id="hannah.models._vendor"></a></p>
<h1 id="hannahmodels_vendor">hannah.models._vendor</h1>
<p><a id="hannah.models.ai8x.models_simplified"></a></p>
<h1 id="hannahmodelsai8xmodels_simplified">hannah.models.ai8x.models_simplified</h1>
<p>A search space based on the cifar 10 NASNet search space for ai85x devices from: htt</p>
<p><a id="hannah.models.ai8x"></a></p>
<h1 id="hannahmodelsai8x">hannah.models.ai8x</h1>
<p><a id="hannah.models.ai8x.models"></a></p>
Expand Down Expand Up @@ -2687,7 +2690,7 @@ <h4 id="symbolic_batch_dim">symbolic_batch_dim</h4>
<h1 id="hannahbackendstensorrt">hannah.backends.tensorrt</h1>
<p><a id="hannah.backends.tensorrt.TensorRTBackend"></a></p>
<h2 id="tensorrtbackend-objects">TensorRTBackend Objects</h2>
<div class="codehilite"><pre><span></span><code><span class="k">class</span> <span class="nc">TensorRTBackend</span><span class="p">(</span><span class="n">InferenceBackendBase</span><span class="p">)</span>
<div class="codehilite"><pre><span></span><code><span class="k">class</span> <span class="nc">TensorRTBackend</span><span class="p">(</span><span class="n">AbstractBackend</span><span class="p">)</span>
</code></pre></div>

<p><a id="hannah.backends.tensorrt.TensorRTBackend.output_spec"></a></p>
Expand All @@ -2700,11 +2703,66 @@ <h4 id="output_spec">output_spec</h4>
<p>Two items, the shape of the output tensor and its (numpy) datatype.</p>
<p><a id="hannah.backends.profile"></a></p>
<h1 id="hannahbackendsprofile">hannah.backends.profile</h1>
<p><a id="hannah.backends.grpc"></a></p>
<h1 id="hannahbackendsgrpc">hannah.backends.grpc</h1>
<p><a id="hannah.backends.grpc.GRPCBackend"></a></p>
<h2 id="grpcbackend-objects">GRPCBackend Objects</h2>
<div class="codehilite"><pre><span></span><code><span class="k">class</span> <span class="nc">GRPCBackend</span><span class="p">(</span><span class="n">InferenceBackendBase</span><span class="p">)</span>
</code></pre></div>

<p><a id="hannah.backends.grpc.GRPCBackend.prepare"></a></p>
<h4 id="prepare">prepare</h4>
<div class="codehilite"><pre><span></span><code><span class="k">def</span> <span class="nf">prepare</span><span class="p">(</span><span class="n">module</span><span class="p">:</span> <span class="n">ClassifierModule</span><span class="p">)</span>
</code></pre></div>

<p>Prepare the model for execution on the target device</p>
<p><strong>Arguments</strong>:</p>
<ul>
<li><code>module</code> - the classifier module to be exported</li>
</ul>
<p><a id="hannah.backends.grpc.GRPCBackend.run"></a></p>
<h4 id="run">run</h4>
<div class="codehilite"><pre><span></span><code><span class="k">def</span> <span class="nf">run</span><span class="p">(</span><span class="o">*</span><span class="n">inputs</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Union</span><span class="p">[</span><span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span> <span class="n">Sequence</span><span class="p">[</span><span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">]]</span>
</code></pre></div>

<p>Run a batch on the target device</p>
<p><strong>Arguments</strong>:</p>
<ul>
<li>
<p><code>inputs</code> - a list of torch tensors representing the inputs to be run on the target device, each tensor represents a whole batched input, so for models taking 1 parameter, the list will contain 1 tensor of shape (batch_size, *input_shape)</p>
</li>
<li>
<p><code>Returns</code> - the output(s) of the model as a torch tensor or a Sequence of torch tensors for models producing multiple outputs</p>
</li>
</ul>
<p><a id="hannah.backends.grpc.GRPCBackend.profile"></a></p>
<h4 id="profile">profile</h4>
<div class="codehilite"><pre><span></span><code><span class="k">def</span> <span class="nf">profile</span><span class="p">(</span><span class="o">*</span><span class="n">inputs</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">ProfilingResult</span>
</code></pre></div>

<p>Do a profiling run on the target device</p>
<p><strong>Arguments</strong>:</p>
<ul>
<li>
<p><code>inputs</code> - a list of torch tensors representing the inputs to be run on the target device, each tensor represents a whole batched input, so for models taking 1 parameter, the list will contain 1 tensor of shape (batch_size, *input_shape)</p>
</li>
<li>
<p><code>Returns</code> - a ProfilingResult object containing the outputs of the model, the metrics obtained from the profiling run and the raw profile in a backend-specific format</p>
</li>
</ul>
<p><a id="hannah.backends.grpc.GRPCBackend.available"></a></p>
<h4 id="available">available</h4>
<div class="codehilite"><pre><span></span><code><span class="nd">@classmethod</span>
<span class="k">def</span> <span class="nf">available</span><span class="p">(</span><span class="bp">cls</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">bool</span>
</code></pre></div>

<p>Check if the backend is available</p>
<p>Returns: True if the backend is available, False otherwise</p>
<p><a id="hannah.backends.onnxrt"></a></p>
<h1 id="hannahbackendsonnxrt">hannah.backends.onnxrt</h1>
<p><a id="hannah.backends.onnxrt.OnnxruntimeBackend"></a></p>
<h2 id="onnxruntimebackend-objects">OnnxruntimeBackend Objects</h2>
<div class="codehilite"><pre><span></span><code><span class="k">class</span> <span class="nc">OnnxruntimeBackend</span><span class="p">(</span><span class="n">InferenceBackendBase</span><span class="p">)</span>
<div class="codehilite"><pre><span></span><code><span class="k">class</span> <span class="nc">OnnxruntimeBackend</span><span class="p">(</span><span class="n">AbstractBackend</span><span class="p">)</span>
</code></pre></div>

<p>Inference Backend for tensorflow</p>
Expand All @@ -2730,7 +2788,7 @@ <h2 id="abstractbackend-objects">AbstractBackend Objects</h2>
</code></pre></div>

<p><a id="hannah.backends.base.AbstractBackend.prepare"></a></p>
<h4 id="prepare">prepare</h4>
<h4 id="prepare_1">prepare</h4>
<div class="codehilite"><pre><span></span><code><span class="nd">@abstractmethod</span>
<span class="k">def</span> <span class="nf">prepare</span><span class="p">(</span><span class="n">module</span><span class="p">:</span> <span class="n">ClassifierModule</span><span class="p">)</span>
</code></pre></div>
Expand All @@ -2741,7 +2799,7 @@ <h4 id="prepare">prepare</h4>
<li><code>module</code> - the classifier module to be exported</li>
</ul>
<p><a id="hannah.backends.base.AbstractBackend.run"></a></p>
<h4 id="run">run</h4>
<h4 id="run_1">run</h4>
<div class="codehilite"><pre><span></span><code><span class="nd">@abstractmethod</span>
<span class="k">def</span> <span class="nf">run</span><span class="p">(</span><span class="o">*</span><span class="n">inputs</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Union</span><span class="p">[</span><span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span> <span class="n">Sequence</span><span class="p">[</span><span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">]]</span>
</code></pre></div>
Expand All @@ -2757,7 +2815,7 @@ <h4 id="run">run</h4>
</li>
</ul>
<p><a id="hannah.backends.base.AbstractBackend.profile"></a></p>
<h4 id="profile">profile</h4>
<h4 id="profile_1">profile</h4>
<div class="codehilite"><pre><span></span><code><span class="nd">@abstractmethod</span>
<span class="k">def</span> <span class="nf">profile</span><span class="p">(</span><span class="o">*</span><span class="n">inputs</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">ProfilingResult</span>
</code></pre></div>
Expand All @@ -2773,7 +2831,7 @@ <h4 id="profile">profile</h4>
</li>
</ul>
<p><a id="hannah.backends.base.AbstractBackend.available"></a></p>
<h4 id="available">available</h4>
<h4 id="available_1">available</h4>
<div class="codehilite"><pre><span></span><code><span class="nd">@classmethod</span>
<span class="nd">@abstractmethod</span>
<span class="k">def</span> <span class="nf">available</span><span class="p">(</span><span class="bp">cls</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">bool</span>
Expand All @@ -2787,17 +2845,11 @@ <h4 id="export">export</h4>
</code></pre></div>

<p>Export the model through the target backend</p>
<p><a id="hannah.backends.base.InferenceBackendBase"></a></p>
<h2 id="inferencebackendbase-objects">InferenceBackendBase Objects</h2>
<div class="codehilite"><pre><span></span><code><span class="k">class</span> <span class="nc">InferenceBackendBase</span><span class="p">(</span><span class="n">AbstractBackend</span><span class="p">)</span>
</code></pre></div>

<p>Base class for backends, it is only here for backwards compatibility reasons, use AbstractBackend instead</p>
<p><a id="hannah.backends.torch_mobile"></a></p>
<h1 id="hannahbackendstorch_mobile">hannah.backends.torch_mobile</h1>
<p><a id="hannah.backends.torch_mobile.TorchMobileBackend"></a></p>
<h2 id="torchmobilebackend-objects">TorchMobileBackend Objects</h2>
<div class="codehilite"><pre><span></span><code><span class="k">class</span> <span class="nc">TorchMobileBackend</span><span class="p">(</span><span class="n">InferenceBackendBase</span><span class="p">)</span>
<div class="codehilite"><pre><span></span><code><span class="k">class</span> <span class="nc">TorchMobileBackend</span><span class="p">(</span><span class="n">AbstractBackend</span><span class="p">)</span>
</code></pre></div>

<p>Inference backend for torch mobile</p>
Expand Down Expand Up @@ -3300,7 +3352,7 @@ <h4 id="loader">loader</h4>

<p>Return the data loader for the dataset</p>
<p><a id="hannah.datasets.pickle_set.PickleDataset.prepare"></a></p>
<h4 id="prepare_1">prepare</h4>
<h4 id="prepare_2">prepare</h4>
<div class="codehilite"><pre><span></span><code><span class="k">def</span> <span class="nf">prepare</span><span class="p">(</span><span class="n">config</span><span class="p">)</span>
</code></pre></div>

Expand Down Expand Up @@ -3478,7 +3530,7 @@ <h2 id="abstractdataset-objects">AbstractDataset Objects</h2>
</code></pre></div>

<p><a id="hannah.datasets.base.AbstractDataset.prepare"></a></p>
<h4 id="prepare_2">prepare</h4>
<h4 id="prepare_3">prepare</h4>
<div class="codehilite"><pre><span></span><code><span class="nd">@classmethod</span>
<span class="nd">@abstractmethod</span>
<span class="k">def</span> <span class="nf">prepare</span><span class="p">(</span><span class="bp">cls</span><span class="p">,</span> <span class="n">config</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">Any</span><span class="p">])</span> <span class="o">-&gt;</span> <span class="kc">None</span>
Expand Down Expand Up @@ -3828,6 +3880,8 @@ <h4 id="conv_relu">conv_relu</h4>
<p>Example for a functional block containing conv and relu</p>
<p><a id="hannah.nas.test.test_random_walk_constrainer"></a></p>
<h1 id="hannahnastesttest_random_walk_constrainer">hannah.nas.test.test_random_walk_constrainer</h1>
<p><a id="hannah.nas.test.test_searchspace_to_graph"></a></p>
<h1 id="hannahnastesttest_searchspace_to_graph">hannah.nas.test.test_searchspace_to_graph</h1>
<p><a id="hannah.nas.test.test_conv2d"></a></p>
<h1 id="hannahnastesttest_conv2d">hannah.nas.test.test_conv2d</h1>
<p><a id="hannah.nas.test.test_graph_transformer"></a></p>
Expand Down Expand Up @@ -3866,6 +3920,14 @@ <h4 id="test_unimplemeted">test_unimplemeted</h4>
<h1 id="hannahnastesttest_lazy_torch">hannah.nas.test.test_lazy_torch</h1>
<p><a id="hannah.nas.test.test_functional_executor"></a></p>
<h1 id="hannahnastesttest_functional_executor">hannah.nas.test.test_functional_executor</h1>
<p><a id="hannah.nas.test.test_max78000_backend"></a></p>
<h1 id="hannahnastesttest_max78000_backend">hannah.nas.test.test_max78000_backend</h1>
<p><a id="hannah.nas.test.test_max78000_backend.SimpleTestModule"></a></p>
<h2 id="simpletestmodule-objects">SimpleTestModule Objects</h2>
<div class="codehilite"><pre><span></span><code><span class="k">class</span> <span class="nc">SimpleTestModule</span><span class="p">(</span><span class="n">ClassifierModule</span><span class="p">)</span>
</code></pre></div>

<p>Simple test module for the backends</p>
<p><a id="hannah.nas.test.test_operators"></a></p>
<h1 id="hannahnastesttest_operators">hannah.nas.test.test_operators</h1>
<p><a id="hannah.nas.test.test_description_ultratrail"></a></p>
Expand Down
2 changes: 1 addition & 1 deletion index.html
Original file line number Diff line number Diff line change
Expand Up @@ -391,5 +391,5 @@ <h1 id="automatic-mirroring">Automatic Mirroring</h1>

<!--
MkDocs version : 1.6.1
Build Date UTC : 2024-10-29 18:28:22.640669+00:00
Build Date UTC : 2024-11-18 13:34:53.784712+00:00
-->
2 changes: 1 addition & 1 deletion search/search_index.json

Large diffs are not rendered by default.

Binary file modified sitemap.xml.gz
Binary file not shown.

0 comments on commit 550d6eb

Please sign in to comment.