Skip to content

Commit

Permalink
Add mlonmcu as performance estimator
Browse files Browse the repository at this point in the history
  • Loading branch information
cgerum authored and Mikhael Djajapermana committed Apr 3, 2024
1 parent 59835a8 commit 8979ca8
Show file tree
Hide file tree
Showing 5 changed files with 181 additions and 4 deletions.
61 changes: 61 additions & 0 deletions hannah/conf/config_mlonmcu.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,61 @@
##
## Copyright (c) 2024 University of Tübingen.
##
## This file is part of hannah.
## See https://atreus.informatik.uni-tuebingen.de/ties/ai/hannah/hannah for further info.
##
## Licensed under the Apache License, Version 2.0 (the "License");
## you may not use this file except in compliance with the License.
## You may obtain a copy of the License at
##
## http://www.apache.org/licenses/LICENSE-2.0
##
## Unless required by applicable law or agreed to in writing, software
## distributed under the License is distributed on an "AS IS" BASIS,
## WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
## See the License for the specific language governing permissions and
## limitations under the License.
##
defaults:
- base_config
- override nas: aging_evolution_nas
- override model: embedded_vision_net
- override dataset: cifar10 # Dataset configuration name
- override features: identity # Feature extractor configuration name (use identity for vision datasets)
- override scheduler: 1cycle # learning rate scheduler config name
- override optimizer: adamw # Optimizer config name
- override normalizer: null # Feature normalizer (used for quantized neural networks)
- override module: image_classifier # Lightning module config for the training loop (image classifier for image classification tasks)
- override /nas/constraint_model: random_walk
- override /nas/mac_predictor: mlonmcu # MLonMCU predictor
- override augmentation: null
- _self_


model:
num_classes: 10

module:
batch_size: 128
num_workers: 4

nas:
budget: 100
n_jobs: 4
bounds:
val_error: 0.03
total_weights: 100000
Cycles: 700000000 # measured by MLonMCU
Total ROM: 1500000 # measured by MLonMCU

trainer:
max_epochs: 10

scheduler:
max_lr: 0.001

fx_mac_summary: True

seed: [1234]

experiment_id: "nas_mlonmcu"
21 changes: 21 additions & 0 deletions hannah/conf/nas/predictor/mlonmcu.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
##
## Copyright (c) 2022 University of Tübingen.
##
## This file is part of hannah.
## See https://atreus.informatik.uni-tuebingen.de/ties/ai/hannah/hannah for further info.
##
## Licensed under the Apache License, Version 2.0 (the "License");
## you may not use this file except in compliance with the License.
## You may obtain a copy of the License at
##
## http://www.apache.org/licenses/LICENSE-2.0
##
## Unless required by applicable law or agreed to in writing, software
## distributed under the License is distributed on an "AS IS" BASIS,
## WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
## See the License for the specific language governing permissions and
## limitations under the License.
##

_target_: hannah.nas.performance_prediction.mlonmcu.predictor.MLonMCUPredictor
model_name: ${model.name}
Empty file.
97 changes: 97 additions & 0 deletions hannah/nas/performance_prediction/mlonmcu/predictor.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,97 @@
import os
import logging
from pathlib import Path

import torch
import mlonmcu.context
from mlonmcu.session.run import RunStage


msglogger = logging.getLogger(__name__)


class MLonMCUPredictor():
def __init__(self,
model_name,
metrics=["Cycles", "Total ROM", "Total RAM"],
platform="mlif",
backend="tvmaot",
target="etiss_pulpino",
frontend="onnx",
postprocess=None,
feature=None,
configs=None,
parallel=None,
progress=False,
verbose=False,):
self.model_name = model_name

self.metrics = metrics
self.platform = platform
self.backend = backend
self.target = target
self.frontend = frontend
self.postprocess = postprocess
self.feature = feature
self.configs = configs
self.parallel = parallel
self.progress = progress
self.verbose = verbose

def predict(self, model, input):
if hasattr(model, 'model'):
model = model.model # FIXME: Decide when to use pl_module and when to use model

# Convert PyTorch model to ONNX
ckpt_path = Path("mlonmcu")
if not os.path.exists(ckpt_path):
os.mkdir(ckpt_path)
model_path = os.path.join(ckpt_path, f"{self.model_name}.onnx")
convert_to_onnx(model, input, model_path)

# Run MLonMCU
print("MLonMCU evaluating {}".format(self.model_name))
if not os.path.isdir(ckpt_path):
raise Exception("INVALID MODEL PATH: ", ckpt_path)
with mlonmcu.context.MlonMcuContext() as context:
session = context.create_session()
run = session.create_run(features=[], config={})
run.add_frontend_by_name("onnx", context=context)
run.add_model_by_name(model_path, context=context)
run.add_backend_by_name(self.backend, context=context)
run.add_platform_by_name(self.platform, context=context)
run.add_target_by_name(self.target, context=context)
# run.add_feature_by_name("vext", context=context)
session.process_runs(until=RunStage.RUN, context=context)
report = session.get_reports()
print(report)

# Return a dict of metric values
mlonmcu_metrics = report.df
result = {}
for metric in self.metrics:
if metric in mlonmcu_metrics:
result[metric] = float(mlonmcu_metrics[metric])
else:
# raise Exception("Metric is not supported by MLonMCU: ", metric)
msglogger.info(f"WARNING: Metric {metric} is not supported by MLonMCU ")

return result

def load(self, result_folder):
pass

def update(self, new_data, input):
pass


def convert_to_onnx(pytorch_model, sample_input, onnx_model_path):
# Export pytorch model to onnx
torch.onnx.export(
model=pytorch_model,
args=sample_input,
f=onnx_model_path, # save path
verbose=False,
)

return onnx_model_path
6 changes: 2 additions & 4 deletions hannah/nas/search/search.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,10 +34,8 @@
from hannah.nas.performance_prediction.simple import MACPredictor
from hannah.nas.search.utils import WorklistItem, save_config_to_file
from hannah.utils.utils import common_callbacks
from hannah.nas.graph_conversion import model_to_graph

from hannah.nas.search.sampler.aging_evolution import FitnessFunction
import traceback
import copy


Expand All @@ -55,7 +53,7 @@ def __init__(
constraint_model=None,
parent_config=None,
random_state=None,
input_shape = None,
input_shape=None,
*args,
**kwargs,
) -> None:
Expand Down Expand Up @@ -395,4 +393,4 @@ def search(self):
print("TODO: Implement search")

def after_search(self):
pass
pass

0 comments on commit 8979ca8

Please sign in to comment.