Skip to content

eqy/PyTorch-Stanford-Cars-Baselines

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PyTorch Stanford Cars Baselines (90.0% with ResNet-50)

Baselines (currently just ResNets and MobileNets) on Stanford Cars Using a minimally modified version of the canonical PyTorch ImageNet example.

Model Accuracy
ResNet-18 86.0
ResNet-50 90.0
ResNet-101 90.1
ResNet-152 90.1
MobileNetv2 87.1
ResNet-18* 61.5
ResNet-50* 7.9
ResNet-101* 5.8
ResNet-152* 4.4
MobileNetv2* 66.4

* denotes no pretraining. Each model just uses the default learning rate schedule (decay by 10 every 30 epochs), and 90 epochs of training. Models without pretraining seem to have stability issues as sometimes they converge to less than 10% accuracy.

Dependencies:

  • PyTorch
  • SciPy (for parsing original .mat metadata files)

To reproduce a result: run download_and_prepare.sh to download the original images and organize them into an ImageFolder dataset. Run main.py (exact same options as the official PyTorch ImageNet example). e.g., python3 main.py --pretrained --arch resnet50

Please submit a PR if you have an improvement to a baseline that is established in the literature (e.g., new data augmentation strategy, regularization, additional image resolution, etc.) and requires minimal hyperparameter tuning.

About

90% on Stanford Cars with ResNets

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published