Skip to content

Commit

Permalink
Browse files Browse the repository at this point in the history
  • Loading branch information
valbert4 committed Jan 14, 2025
2 parents 115e323 + 3c38c5d commit 29bae11
Show file tree
Hide file tree
Showing 3 changed files with 9 additions and 8 deletions.
11 changes: 6 additions & 5 deletions codes/quantum/groups/group_gkp/group_gkp.yml
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@ description: |
& Galois-qudit CSS
\\
\(n\) modes & \( \mathbb{R}^n \) & \( \mathbb{R}^m \)
& analog stabilizer
& analog CSS
\\
\(n\) modes & \( \mathbb{R}^n \) & \( \mathbb{Z}^n \)
& multimode GKP
Expand Down Expand Up @@ -74,10 +74,11 @@ relations:
detail: 'Group GKP codes are stabilized by \(X\)-type \hyperref[topic:group-pauli]{group-based error operators} representing \(H\) and all \(Z\)-type operators that are constant on \(K\).
However, the \(Z\)-type operators are not unitary for non-Abelian groups.'
- code_id: oscillator_stabilizer
detail: 'The group-GKP construction encompasses all bosonic CSS codes.
A single-mode qubit GKP code corresponds to the \(2\mathbb{Z}\subset\mathbb{Z}\subset\mathbb{R}\) group construction, and multimode GKP codes can be similarly described.
An \([[n,k,d]]_{\mathbb{R}}\) analog stabilizer code corresponds to the \(\mathbb{R}^{ k_1} \subseteq \mathbb{R}^{ k_2} \subset \mathbb{R}^{n}\) group construction, where \(k=k_2/k_1\).
GKP stabilizer codes for \(n\) modes correspond to subgroups \(\mathbb{Z}^m\) for \(m<n\).'
detail: |
The group-GKP construction encompasses all bosonic CSS codes.
A single-mode qubit GKP code corresponds to the \(2\mathbb{Z}\subset\mathbb{Z}\subset\mathbb{R}\) group construction, and multimode GKP codes can be similarly described.
Oscillator-into-oscillator GKP codes for \(n\) modes correspond to subgroups \(\mathbb{Z}^m\) for \(m<n\).
An \([[n,k,d]]_{\mathbb{R}}\) analog CSS code corresponds to the \(\mathbb{R}^{ k_1} \subseteq \mathbb{R}^{ k_2} \subset \mathbb{R}^{n}\) group construction, where \(k=k_2-k_1\).'
# Begin Entry Meta Information
_meta:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,7 @@ notes:
relations:
parents:
- code_id: analog_stabilizer
detail: 'Analog-cluster-state codes are particular analog stabilizer codes. Relaxing the real weighted adjacency matrix of an analog cluster state to be complex yields a description of a general analog (i.e., Gaussian) stabilizer code state \cite{arxiv:1007.0725}.'
detail: 'Analog-cluster-state codes are particular analog stabilizer codes. Relaxing the real weighted adjacency matrix of an analog cluster state to be complex yields a description of a general analog (i.e., Gaussian) stabilizer code state \cite{arxiv:1007.0725}. Pure Gaussian states, which are normalizable approximate versions of analog stabilizer states, are not equivalent to finitely squeezed analog cluster states via Gaussian local unitaries \cite{arxiv:1912.06463}.'
- code_id: group_cluster_state
detail: 'Analog cluster states are group-based cluster states for \(G=\mathbb{R}\).'

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -42,9 +42,9 @@ relations:
- code_id: gkp_concatenated
detail: 'Oscillator-into-oscillator GKP codes concantenated with qubit-into-oscillator GKP codes can outperform more conventional concatenations of qubit-into-oscillator GKP codes with qubit stabilizer codes \cite{arxiv:2209.04573}.'
- code_id: dfour_gkp
detail: '\(D_4\) hyper-diamond GKP codes may be optimal for GKP stabilizer codes utilizing two ancilla modes \cite{arxiv:2212.11970}.'
detail: '\(D_4\) hyper-diamond GKP codes may be optimal for oscillator-into-oscillator GKP codes utilizing two ancilla modes \cite{arxiv:2212.11970}.'
- code_id: hexagonal_gkp
detail: 'Hexagonal GKP codes may be optimal for GKP stabilizer codes utilizing one ancilla mode \cite{arxiv:2212.11970}.'
detail: 'Hexagonal GKP codes may be optimal for oscillator-into-oscillator GKP codes utilizing one ancilla mode \cite{arxiv:2212.11970}.'


# Begin Entry Meta Information
Expand Down

0 comments on commit 29bae11

Please sign in to comment.