Skip to content

Commit

Permalink
Add back estimate_inverse_gamma_parameters in utils (#46)
Browse files Browse the repository at this point in the history
  • Loading branch information
vandalt authored Mar 6, 2024
1 parent a8ee098 commit 34e478a
Show file tree
Hide file tree
Showing 2 changed files with 76 additions and 2 deletions.
53 changes: 52 additions & 1 deletion src/pymc_ext/utils.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,14 @@
__all__ = ["Evaluator", "eval_in_model", "sample_inference_data"]
__all__ = [
"Evaluator",
"eval_in_model",
"sample_inference_data",
"estimate_inverse_gamma_parameters",
]

import numpy as np
import pymc as pm
from scipy.optimize import root
from scipy.special import gammaincc


class Evaluator:
Expand Down Expand Up @@ -75,3 +82,47 @@ def sample(**kwargs):
kwargs["target_accept"] = kwargs.get("target_accept", 0.9)
kwargs["init"] = kwargs.get("init", "adapt_full")
return pm.sample(**kwargs)


def estimate_inverse_gamma_parameters(
lower, upper, target=0.01, initial=None, **kwargs
):
r"""Estimate an inverse Gamma with desired tail probabilities
This method numerically solves for the parameters of an inverse Gamma
distribution where the tails have a given probability. In other words
:math:`P(x < \mathrm{lower}) = \mathrm{target}` and similarly for the
upper bound. More information can be found in `part 4 of this blog post
<https://betanalpha.github.io/assets/case_studies/gp_part3/part3.html>`_.
Args:
lower (float): The location of the lower tail
upper (float): The location of the upper tail
target (float, optional): The desired tail probability
initial (ndarray, optional): An initial guess for the parameters
``alpha`` and ``beta``
Raises:
RuntimeError: If the solver does not converge.
Returns:
dict: A dictionary with the keys ``alpha`` and ``beta`` for the
parameters of the distribution.
"""
lower, upper = np.sort([lower, upper])
if initial is None:
initial = np.array([2.0, 0.5 * (lower + upper)])
if np.shape(initial) != (2,) or np.any(np.asarray(initial) <= 0.0):
raise ValueError("invalid initial guess")

def obj(x):
a, b = np.exp(x)
return np.array(
[
gammaincc(a, b / lower) - target,
1 - gammaincc(a, b / upper) - target,
]
)

result = root(obj, np.log(initial), method="hybr", **kwargs)
if not result.success:
raise RuntimeError(
"failed to find parameter estimates: \n{0}".format(result.message)
)
return dict(zip(("alpha", "beta"), np.exp(result.x)))
25 changes: 24 additions & 1 deletion tests/utils_test.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,9 @@
import numpy as np
import pymc as pm
import pytest
from scipy.stats import invgamma

from pymc_ext.utils import eval_in_model
from pymc_ext.utils import estimate_inverse_gamma_parameters, eval_in_model


def test_eval_in_model(seed=123409):
Expand Down Expand Up @@ -39,3 +41,24 @@ def test_eval_in_model_list(seed=123409):
x_eval, y_eval = eval_in_model([x, y])
assert np.allclose(x_eval, x_val)
assert np.allclose(y_eval, y_val)


@pytest.mark.parametrize(
"lower, upper, target",
[(1.0, 2.0, 0.01), (0.01, 0.1, 0.1), (10.0, 25.0, 0.01)],
)
def test_estimate_inverse_gamma_parameters(lower, upper, target):
np.random.seed(20200409)

params = estimate_inverse_gamma_parameters(lower, upper, target=target)
dist = invgamma(params["alpha"], scale=params["beta"])
assert np.allclose(dist.cdf(lower), target)
assert np.allclose(1 - dist.cdf(upper), target)

samples = pm.draw(pm.InverseGamma.dist(**params), draws=10000)
assert np.allclose(
(samples < lower).sum() / len(samples), target, atol=1e-2
)
assert np.allclose(
(samples > upper).sum() / len(samples), target, atol=1e-2
)

0 comments on commit 34e478a

Please sign in to comment.