Skip to content

Commit

Permalink
[DOC] Update changelog (#311)
Browse files Browse the repository at this point in the history
Co-authored-by: Felix Dangel <[email protected]>
  • Loading branch information
f-dangel and f-dangel authored Jul 12, 2023
1 parent 67ae8fe commit ee1dc4f
Showing 1 changed file with 56 additions and 1 deletion.
57 changes: 56 additions & 1 deletion changelog.md
Original file line number Diff line number Diff line change
Expand Up @@ -9,17 +9,72 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
## [1.6.0] - 2023-06-26

With this patch, BackPACK supports `torch==2.x` and deprecates `python3.7`
([PR](https://github.com/f-dangel/backpack/pull/307)).
([PR](https://github.com/f-dangel/backpack/pull/307)). BackPACK now supports
`BCEWithLogitsLoss`, and supports KFAC for N-dimensional (transpose)
convolutions.

### Added/New
- Example use case for `retain_graph`
([PR](https://github.com/f-dangel/backpack/pull/302))
- Example for computing batched Jacobians
([PR](https://github.com/f-dangel/backpack/pull/267))
- Support `BCEWithLogitsLoss`
- `BatchDiagHessian` and `DiagHessian` extensions
([PR](https://github.com/f-dangel/backpack/pull/279))
- `BatchDiagGGN` (exact, MC) and `DiagGGN` (exact, MC) extensions
([PR](https://github.com/f-dangel/backpack/pull/280))
- `KFAC` extension
([PR](https://github.com/f-dangel/backpack/pull/283))
- `KFLR` extension
([PR](https://github.com/f-dangel/backpack/pull/284))
- Extend `KFAC, KFLR, KFRA` to N-dimensional convolutions (and transpose
convolutions) ([blog post](https://fdangel.com/posts/kfac_explained.html))
- Support for `Conv{1,2,3}d`
([PR](https://github.com/f-dangel/backpack/pull/291))
- Support for `ConvTranspose{1,2,3}d`
([PR](https://github.com/f-dangel/backpack/pull/292))

### Fixed/Removed
- Use correct imports on website code samples
([PR](https://github.com/f-dangel/backpack/pull/262))

### Internal
- Update code to latest `black` and `flake8`
([PR](https://github.com/f-dangel/backpack/pull/301))
- Fix examples on splash page
([PR](https://github.com/f-dangel/backpack/pull/298))
- Abstract negative log-likelihood losses in core
([PR](https://github.com/f-dangel/backpack/pull/252))
- Apply to `MSELoss` derivatives
([PR](https://github.com/f-dangel/backpack/pull/252))
- Apply to `CrossEntropyLoss` derivatives
([PR](https://github.com/f-dangel/backpack/pull/256))
- Implement `BCEWithLogitsLoss` derivatives
([PR](https://github.com/f-dangel/backpack/pull/257))
- Implement second-order derivatives of `BCEWithLogitsLoss`
([PR](https://github.com/f-dangel/backpack/pull/271))
- Implement optimized sampled gradients for `BCEWithLogitsLoss`
([PR](https://github.com/f-dangel/backpack/pull/278))
- Use batch size 1 in KFAC tests for ResNets
([PR](https://github.com/f-dangel/backpack/pull/265))
- Test with PyTorch `1.9.0` and `1.12.0` and make tests compatible
([PR](https://github.com/f-dangel/backpack/pull/277))
- Use `unfoldNd` package
- For input unfolding of convolutions
([PR](https://github.com/f-dangel/backpack/pull/285))
- For input unfolding of transpose convolutions
([PR](https://github.com/f-dangel/backpack/pull/287))
- Fully-document utility functions for convolutions
([PR](https://github.com/f-dangel/backpack/pull/286))
- Make output shape of unfolded input of transpose convolution consistent with
convolution case
([PR](https://github.com/f-dangel/backpack/pull/289))
- Fully-document `HBPConv2d` class
([PR](https://github.com/f-dangel/backpack/pull/290))
- Fix support for PyTorch 1.13
([PR](https://github.com/f-dangel/backpack/pull/296))
- Update linting and formatting to latest `black`, `flake8`
([PR](https://github.com/f-dangel/backpack/pull/301))

## [1.5.2] - 2022-12-19

Expand Down

0 comments on commit ee1dc4f

Please sign in to comment.