Skip to content

Refactor Distributors to make it acutally do its jobs (#68) #122

Refactor Distributors to make it acutally do its jobs (#68)

Refactor Distributors to make it acutally do its jobs (#68) #122

Workflow file for this run

name: examples
on: [push, pull_request]
jobs:
examples:
name: "Python 3.10"
runs-on: 4-core-ubuntu-gpu-t4
steps:
- uses: actions/checkout@v4
- name: Set up and update uv.
run: |
curl -LsSf https://astral.sh/uv/install.sh | sh
source $HOME/.local/bin/env
uv self update
- name: Install Python.
run: uv python install 3.10
- name: Create venv and install the package.
run: |
uv venv && source .venv/bin/activate
uv pip install ".[examples]"
- name: Run default example on CPU.
run: |
source .venv/bin/activate
CUDA_VISIBLE_DEVICES="" python -m distributed_shampoo.examples.default_cifar10_example --optimizer-type DISTRIBUTED_SHAMPOO --precondition-frequency 30 --grafting-type ADAM --use-bias-correction --use-decoupled-weight-decay --use-merge-dims --epochs 1 --batch-size 1024
- name: Run default example on GPU.
run: |
source .venv/bin/activate
python -m distributed_shampoo.examples.default_cifar10_example --optimizer-type DISTRIBUTED_SHAMPOO --precondition-frequency 30 --grafting-type ADAM --use-bias-correction --use-decoupled-weight-decay --use-merge-dims --epochs 1 --batch-size 1024
- name: Run DDP example on CPU.
run: |
source .venv/bin/activate
CUDA_VISIBLE_DEVICES="" torchrun --standalone --nnodes=1 --nproc_per_node=2 -m distributed_shampoo.examples.ddp_cifar10_example --optimizer-type DISTRIBUTED_SHAMPOO --precondition-frequency 15 --grafting-type ADAM --use-bias-correction --use-decoupled-weight-decay --use-merge-dims --epochs 1 --local-batch-size 1024 --backend gloo
- name: Run DDP example on GPU.
run: |
source .venv/bin/activate
torchrun --standalone --nnodes=1 --nproc_per_node=1 -m distributed_shampoo.examples.ddp_cifar10_example --optimizer-type DISTRIBUTED_SHAMPOO --precondition-frequency 30 --grafting-type ADAM --use-bias-correction --use-decoupled-weight-decay --use-merge-dims --epochs 1 --local-batch-size 1024