-
Notifications
You must be signed in to change notification settings - Fork 135
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
A sample demonstrating how to use Postgres's vector extension to build an indexer and retriever. Formerly #375.
- Loading branch information
Showing
4 changed files
with
246 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,218 @@ | ||
// Copyright 2024 Google LLC | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
// This program shows how to use Postgres's pgvector extension with Genkit. | ||
|
||
// This program can be manually tested like so: | ||
// | ||
// In development mode (with the environment variable GENKIT_ENV="dev"): | ||
// Start the server listening on port 3100: | ||
// | ||
// go run . -dbconn "$DBCONN" -apikey $API_KEY & | ||
// | ||
// Ask a question: | ||
// | ||
// curl -d '{"Show": "Best Friends", "Question": "Who does Alice love?"}' http://localhost:3400/askQuestion | ||
package main | ||
|
||
import ( | ||
"context" | ||
"database/sql" | ||
"errors" | ||
"flag" | ||
"fmt" | ||
"log" | ||
|
||
"github.com/firebase/genkit/go/ai" | ||
"github.com/firebase/genkit/go/genkit" | ||
"github.com/firebase/genkit/go/plugins/googleai" | ||
_ "github.com/lib/pq" | ||
pgv "github.com/pgvector/pgvector-go" | ||
) | ||
|
||
var ( | ||
connString = flag.String("dbconn", "", "database connection string") | ||
apiKey = flag.String("apikey", "", "Gemini API key") | ||
index = flag.Bool("index", false, "index the existing data") | ||
) | ||
|
||
func main() { | ||
flag.Parse() | ||
if err := run(); err != nil { | ||
log.Fatal(err) | ||
} | ||
} | ||
|
||
func run() error { | ||
if *connString == "" { | ||
return errors.New("need -dbconn") | ||
} | ||
if *apiKey == "" { | ||
return errors.New("need -apikey") | ||
} | ||
ctx := context.Background() | ||
if err := googleai.Init(ctx, &googleai.Config{APIKey: *apiKey}); err != nil { | ||
return err | ||
} | ||
const embedderName = "embedding-001" | ||
embedder := googleai.Embedder(embedderName) | ||
if embedder == nil { | ||
return fmt.Errorf("embedder %s is not known to the googleai plugin", embedderName) | ||
} | ||
|
||
db, err := sql.Open("postgres", *connString) | ||
if err != nil { | ||
return err | ||
} | ||
defer db.Close() | ||
|
||
if *index { | ||
indexer := defineIndexer(db, embedder) | ||
if err := indexExistingRows(ctx, db, indexer); err != nil { | ||
return err | ||
} | ||
} | ||
|
||
retriever := defineRetriever(db, embedder) | ||
|
||
type input struct { | ||
Question string | ||
Show string | ||
} | ||
|
||
genkit.DefineFlow("askQuestion", func(ctx context.Context, in input) (string, error) { | ||
res, err := retriever.Retrieve(ctx, &ai.RetrieverRequest{ | ||
Document: &ai.Document{Content: []*ai.Part{ai.NewTextPart(in.Question)}}, | ||
Options: in.Show, | ||
}) | ||
if err != nil { | ||
return "", err | ||
} | ||
for _, doc := range res.Documents { | ||
fmt.Printf("%+v %q\n", doc.Metadata, doc.Content[0].Text) | ||
} | ||
// Use documents in RAG prompts. | ||
return "", nil | ||
}) | ||
|
||
return genkit.Init(ctx, nil) | ||
} | ||
|
||
const provider = "pgvector" | ||
|
||
func defineRetriever(db *sql.DB, embedder *ai.Embedder) *ai.Retriever { | ||
f := func(ctx context.Context, req *ai.RetrieverRequest) (*ai.RetrieverResponse, error) { | ||
eres, err := embedder.Embed(ctx, &ai.EmbedRequest{Documents: []*ai.Document{req.Document}}) | ||
if err != nil { | ||
return nil, err | ||
} | ||
rows, err := db.QueryContext(ctx, ` | ||
SELECT episode_id, season_number, chunk as content | ||
FROM embeddings | ||
WHERE show_id = $1 | ||
ORDER BY embedding <#> $2 | ||
LIMIT 2`, | ||
req.Options, pgv.NewVector(eres.Embeddings[0].Embedding)) | ||
if err != nil { | ||
return nil, err | ||
} | ||
defer rows.Close() | ||
|
||
res := &ai.RetrieverResponse{} | ||
for rows.Next() { | ||
var eid, sn int | ||
var content string | ||
if err := rows.Scan(&eid, &sn, &content); err != nil { | ||
return nil, err | ||
} | ||
meta := map[string]any{ | ||
"episode_id": eid, | ||
"season_number": sn, | ||
} | ||
doc := &ai.Document{ | ||
Content: []*ai.Part{ai.NewTextPart(content)}, | ||
Metadata: meta, | ||
} | ||
res.Documents = append(res.Documents, doc) | ||
} | ||
if err := rows.Err(); err != nil { | ||
return nil, err | ||
} | ||
return res, nil | ||
} | ||
return ai.DefineRetriever(provider, "shows", f) | ||
} | ||
|
||
func defineIndexer(db *sql.DB, embedder *ai.Embedder) *ai.Indexer { | ||
// The indexer assumes that each Document has a single part, to be embedded, and metadata fields | ||
// for the table primary key: show_id, season_number, episode_id. | ||
const query = ` | ||
UPDATE embeddings | ||
SET embedding = $4 | ||
WHERE show_id = $1 AND season_number = $2 AND episode_id = $3 | ||
` | ||
return ai.DefineIndexer(provider, "shows", func(ctx context.Context, req *ai.IndexerRequest) error { | ||
res, err := embedder.Embed(ctx, &ai.EmbedRequest{Documents: req.Documents}) | ||
if err != nil { | ||
return err | ||
} | ||
// You may want to use your database's batch functionality to insert the embeddings | ||
// more efficiently. | ||
for i, emb := range res.Embeddings { | ||
doc := req.Documents[i] | ||
args := make([]any, 4) | ||
for j, k := range []string{"show_id", "season_number", "episode_id"} { | ||
if a, ok := doc.Metadata[k]; ok { | ||
args[j] = a | ||
} else { | ||
return fmt.Errorf("doc[%d]: missing metadata key %q", i, k) | ||
} | ||
} | ||
args[3] = pgv.NewVector(emb.Embedding) | ||
if _, err := db.ExecContext(ctx, query, args...); err != nil { | ||
return err | ||
} | ||
} | ||
return nil | ||
}) | ||
} | ||
|
||
func indexExistingRows(ctx context.Context, db *sql.DB, indexer *ai.Indexer) error { | ||
rows, err := db.QueryContext(ctx, `SELECT show_id, season_number, episode_id, chunk FROM embeddings`) | ||
if err != nil { | ||
return err | ||
} | ||
defer rows.Close() | ||
|
||
req := &ai.IndexerRequest{} | ||
for rows.Next() { | ||
var sid, chunk string | ||
var sn, eid int | ||
if err := rows.Scan(&sid, &sn, &eid, &chunk); err != nil { | ||
return err | ||
} | ||
req.Documents = append(req.Documents, &ai.Document{ | ||
Content: []*ai.Part{ai.NewTextPart(chunk)}, | ||
Metadata: map[string]any{ | ||
"show_id": sid, | ||
"season_number": sn, | ||
"episode_id": eid, | ||
}, | ||
}) | ||
} | ||
if err := rows.Err(); err != nil { | ||
return err | ||
} | ||
return indexer.Index(ctx, req) | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,22 @@ | ||
-- This SQL enables the vector extension and creates the table and data used | ||
-- in the accompanying sample. | ||
|
||
CREATE EXTENSION IF NOT EXISTS vector; | ||
|
||
CREATE TABLE embeddings ( | ||
show_id TEXT NOT NULL, | ||
season_number INTEGER NOT NULL, | ||
episode_id INTEGER NOT NULL, | ||
chunk TEXT, | ||
embedding vector(768), | ||
PRIMARY KEY (show_id, season_number, episode_id) | ||
); | ||
|
||
INSERT INTO embeddings (show_id, season_number, episode_id, chunk) VALUES | ||
('La Vie', 1, 1, 'Natasha confesses her love for Pierre.'), | ||
('La Vie', 1, 2, 'Pierre and Natasha become engaged.'), | ||
('La Vie', 1, 3, 'Margot and Henri divorce.'), | ||
('Best Friends', 1, 1, 'Alice confesses her love for Oscar.'), | ||
('Best Friends', 1, 2, 'Oscar and Alice become engaged.'), | ||
('Best Friends', 1, 3, 'Bob and Pat divorce.') | ||
; |