- nop
- wandb (likely to have some login/setting up to do here)
- jax
- jaxlib
- pytorch
- readchar
This codebase uses aflred
for experiment management. The code for the environment is hosted on a separated repo: https://github.com/flowersteam/architect-builder-env.
To run experiments you need to make a new directory and clone the architect-builder-abig
repo in it as well as the alfred
and architect-builder-env
repos.
mkdir abp
cd abp
git clone [email protected]:flowersteam/architect-builder-abig.git
git clone --branch abig-iclr2022 [email protected]:PBarde/alfred.git
git clone [email protected]:flowersteam/architect-builder-env.git
Then you need to install them using the following commands.
cd alfred
pip install -e .
cd ../architect-builder-env
pip install -e .
cd ../architect-builder-abig
pip install -e .
To make using alfred as seamless as possible, add the followings to your .bachrc
:
alias alprep='python -m alfred.prepare_schedule'
alias allaunch='python -m alfred.launch_schedule'
alias alclean='python -m alfred.clean_interrupted'
alias alplot='python -m alfred.make_plot_arrays'
alias alretrain='python -m alfred.create_retrainbest'
alias albench='python -m alfred.benchmark'
alias alsync='python -m alfred.sync_wandb'
alias alcopy='python -m alfred.copy_config'
alias alupdate='python -m alfred.update_config_unique'
All command lines should be ran from main_comem/main_comem
.
Each run takes approximately 48h to run on a CPU.
Prepare the experiments to be ran
alprep --desc 3b --schedule_file schedules/bw_task4_bc/grid_schedule_task_4.py
Run the experiments (recommended doing in parallel since each run takes 48h, by playing with allaunch
arguments --n_processes
and --n_experiments_per_proc
)
allaunch --from_file schedules/bw_task4_bc/list_searches_bw_task4_bc.txt
Evaluate the performances
python utils/analyses_OOD.py --from_file schedules/bw_task4_bc/grid_schedule_task_4.py
Plot the results
python utils/make_analyse_OOD.plot --from_file schedules/bw_task4_bc/grid_schedule_task_4.py
Prepare the experiments to be ran
alprep --desc 6b --schedule_file schedules/bw_task4_bc_6b/grid_schedule_task_4.py
Run the experiments (recommended doing in parallel since each run takes 48h, by playing with allaunch
arguments --n_processes
and --n_experiments_per_proc
)
allaunch --from_file schedules/bw_task4_bc_6b/list_searches_bw_task4_bc.txt
Evaluate the performances
python utils/analyses_OOD.py --from_file schedules/bw_task4_bc_6b/grid_schedule_task_4.py
Plot the results
python utils/make_analyse_OOD.plot --from_file schedules/bw_task4_bc_6b/grid_schedule_task_4.py
The project is licensed under the MIT license.
@inproceedings{
barde2022learning,
title={Learning to Guide and to be Guided in the Architect-Builder Problem},
author={Paul Barde and Tristan Karch and Derek Nowrouzezahrai and Cl{\'e}ment Moulin-Frier and Christopher Pal and Pierre-Yves Oudeyer},
booktitle={International Conference on Learning Representations},
year={2022},
url={https://openreview.net/forum?id=swiyAeGzFhQ}
}