Skip to content

forta-network/bot-alert-rate

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PyPI npm

bot-alert-rate

Tool that calculates bot alert rate. Bot alert rate measures the rareness of a specific alert relative to the number of blockchain activity. For example, a bot alert rate can be # of bot alerts / # of contract creations in the last 24 hours. Most Forta threat detection bots and community bots use this package to help identity anomalous alerts.

Requirements

Create a Zettablock account to get an API key and set the following env variable:

  • ZETTABLOCK_API_KEY

Tutorials

Python

Install

First install the package and run the python example

$ pip install bot_alert_rate
$ python example.py

Using the Zetta API

You can query the Zetta API to get the rate of a specific alert. To do so, call calculate_alert_rate with the specifics of the alert:

from bot_alert_rate import calculate_alert_rate, ScanCountType

# BSC
CHAIN_ID = 56
# sentiment analysis tx message bot - https://explorer.forta.network/bot/0xbdb84cba815103a9a72e66643fb4ff84f03f7c9a4faa1c6bb03d53c7115ddc4d
BOT_ID = "0xbdb84cba815103a9a72e66643fb4ff84f03f7c9a4faa1c6bb03d53c7115ddc4d"
ALERT_ID = "NEGATIVE-ANGER-TEXT-MESSAGE"


if __name__ == "__main__":
    alert_rate = calculate_alert_rate(
        CHAIN_ID, BOT_ID, ALERT_ID, ScanCountType.TX_WITH_INPUT_DATA_COUNT
    )
    print(alert_rate)

Using a local history

An alternative is to save a local history of the alerts in memory and use it to calculate the rates. The main motivation is to improve performance by avoiding web requests.

To use it, just wrap handle_block / handle_transaction / handle_alert as follows:

@alert_history(size=10000)
def handle_block(log: BlockEvent) -> list:
    pass

@alert_history(size=10000)
def handle_transaction(log: TransactionEvent) -> list:
    pass

@alert_history(size=10000)
def handle_alert(log: AlertEvent) -> list:
    pass

The decorator will automatically add the anomaly_score in the metadata of the Finding objects. It will use the field alert_id from the Finding objects to identify them.

make sure the history size is big enough to contain occurences of the bot alerts!

For example, if your bot triggers ALERT-1 every 2k transactions and ALERT-2 every 10k on average: @alert_history(size=100000) would gather enough alerts to have a relevant estimation of the rate of both alerts.

Typescript

First install the package and run the typescript example

$ npm i bot-alert-rate
$ ts-node example.ts
import { ScanCountType } from "bot-alert-rate";
import calculateAlertRate from "bot-alert-rate";

// BSC
const chainId = 56;
// sentiment analysis tx message bot - https://explorer.forta.network/bot/0xbdb84cba815103a9a72e66643fb4ff84f03f7c9a4faa1c6bb03d53c7115ddc4d
const botId = "0xbdb84cba815103a9a72e66643fb4ff84f03f7c9a4faa1c6bb03d53c7115ddc4d";
const alertId = "NEUTRAL-NEUTRAL-TEXT-MESSAGE";


calculateAlertRate(
    chainId, botId, alertId, ScanCountType.TxWithInputDataCount
).then(alertRate => {
    console.log(alertRate);
}).catch((error) => {
    console.error(error);
});

About

Tool that calculators bot alert rate

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published