Data sharing
- Final supplemental tables available with the paper.
- GitHub releases: TWAS/PrediXcan weights, SuSiE fine-mapping results.
- Galaxy: https://usegalaxy.org/u/cindywen/h/devbrainsumstats. Cross-ancestry e/iso/sQTL nominal and permutation summary statistics, effect alleles, MAFs.
- Synapse: https://doi.org/10.7303/syn50897018.5. QTL summary statistics. Requires sign-in.
- Gandal lab internal: Google doc with paths to fils on Hoffman2.
- Run
plinkQC
on data as a sanity check - First apply PLINK filters, then split by chromosome and sort
- Walker data is already filtered; split by chromosome and impute
- For all the other datasets, we applied the same filters that the Walker data used
--hwe 1e-6 --maf 0.01 --mind 0.10 --geno 0.05
- Note: for HDBR, we used
--mind 0.3
; for LIBD, we fixed strand flips by running an extra step of conform-gt, which automatically splits the data by chromosome
- Scripts in
prelim/
: inputs are imputed genotype files downloaded from Michigan Imputation Server; concatenate by chromosomes, index, filter by R2, and take the intersection of high impute quality variants across datasets- Note: except for Walker data, we applied R2>.3 filter during imputation; so here we only applied R2>.3 on Walker imputed data and intersected with the other datasets
ancestry.ipynb
: infer data ancestry, make plotsIBD.ipynb
: relatedness checkSnakefile
- Pre-alignment QC FastQC v0.11.9
- Alignment STAR-2.7.3a, index with GENCODE v29lift37 genome and annotation
- Note: there is a new run of STAR for sQTL
- Alignment QC PicardTools 2.21.7
- Compile FastQC and PicardTools metrics MultiQC v1.9.dev0
# In picard/
# -d -dd 1: to keep identical sample ID from different folders
python3 -m multiqc -d -dd 1 Walker/ Obrien Werling_final/ hdbr libd -o all_multiqc
- Quantification Salmon v1.1.0, GENCODE v33lift37 decoys-aware index
- Compile and import quantifications Tximport 1.14.0
txi <- tximport(files, type="salmon", tx2gene=tx2gene, dropInfReps=TRUE, countsFromAbundance="lengthScaledTPM")
write.table(txi$counts,file="gene.noVersion.scaled.counts.tsv",quote=FALSE, sep='\t')
write.table(txi$abundance,file="gene.noVersion.TPM.tsv",quote=FALSE, sep='\t')
txi.tx <- tximport(files, type="salmon", txOut=TRUE, dropInfReps=TRUE, countsFromAbundance="lengthScaledTPM")
write.table(txi.tx$counts,file="tx.counts.scaled.tsv",quote=FALSE, sep='\t')
write.table(txi.tx$abundance,file="tx.TPM.tsv",quote=FALSE, sep='\t')
- Sample swap check:
- VerifyBamID (slow. Use
--smID
to add subject ID to BAM sequence file) check.ipynb
: called SNP from BAM, merged with imputed genotype (Mike)
- VerifyBamID (slow. Use
ancestry.ipynb
combat-seq.ipynb
decon.ipynb
: cell type specific and interacting analysiseqtl_analysis.ipynb
: identify optimal #HCP in covariates, gene expression PCA, dTSS, etc.fetal_adult.ipynb
func_enrich.ipynb
: functional enrichment analysis of QTLmetadata.ipynb
: plot data age, sex, infer NA sex, etc.module_eigengene.ipynb
paintor.ipynb
: PAINTOR multi-ethnic fine-mappingpLI.ipynb
sex_specific.ipynb
susie.ipynb
: susie finemapping resultstri_egene_biotype.ipynb
tri_h2_supp.ipynb
tri_specific.ipynb
walker_fetal.ipynb
Snakefile
decon.smk
paintor.smk
isoqtl_analysis.ipynb
prep.ipynb
: sex and trimester specific QTLSnakefile
: follows a similar pipeline as cis-eQTL, except that run grouped permutation as GTEx did
sqtl_analysis.ipynb
e_iso_s.ipynb
qvalue_pi0.ipynb
check.ipynb
: check chunk sizeSnakefile
gbat.ipynb
Snakefile
apex_analysis.ipynb
Snakefile
See coloc_ecaviar_May_2024/
for colocalization analysis
ldsc_analysis.ipynb
Snakefile
pec.smk
TWAS.ipynb
LDREF.ipynb
run_focus.sh
Snakefile
MESC.ipynb
Snakefile
test.smk
eCAVIAR.ipynb
GRIN2A.ipynb
SP4_gviz.ipynb
sqtlviztools.ipynb
Visualizing_Loci_working.ipynb
celltype.smk
eqtl.smk
isoqtl.smk
mod_ieqtl.smk
sex_tri.smk
sqtl.smk
- sashimi plot related code
fetal_only_egenes.ipynb
: biotype and cell type analysis for fetal-specific eGenestrimester_egenes_sgenes.ipynb
: biotype and cell type analysis for trimester-specific e/sGenes
compare_module_enrichment.ipynb
: compare enrichment across networks and across correlated cell typesdashboard_generator.ipynb
: generate dashboards using ST6.xlsxdashboards
: folder containing dashboards for each module