Skip to content

Commit

Permalink
Merge pull request #22 from erich-9/fix-examples
Browse files Browse the repository at this point in the history
Fix files in directory "examples".
  • Loading branch information
sunnyquiver authored Oct 1, 2018
2 parents 263ce5f + 8eb4b1a commit ca9d1b1
Show file tree
Hide file tree
Showing 5 changed files with 139 additions and 10 deletions.
4 changes: 2 additions & 2 deletions examples/examples_chain_complexes.g
Original file line number Diff line number Diff line change
Expand Up @@ -45,8 +45,8 @@ IsExactInDegree(C,2);
C;
Shift(C,1);
D := Shift(C,-1);
dc := DifferentialOfComplex(C,3)!.maps;
dd := DifferentialOfComplex(D,4)!.maps;
dc := DifferentialOfComplex(C,3);
dd := DifferentialOfComplex(D,4);
MatricesOfPathAlgebraMatModuleHomomorphism(dc);
MatricesOfPathAlgebraMatModuleHomomorphism(dd);
####################
Expand Down
8 changes: 4 additions & 4 deletions examples/examples_homomorphisms.g
Original file line number Diff line number Diff line change
Expand Up @@ -34,9 +34,9 @@ y := ZeroMapping(L,N);
y = z;
id := IdentityMapping(N);
f*id;
#This causes an error!
id*f;
quit;;
# #This causes an error!
# id*f;
# quit;;
2*f + z;
###########
L := RightModuleOverPathAlgebra(A,[["a",[0,1]],["b",[0,1]],
Expand All @@ -53,7 +53,7 @@ IsIsomorphism(h);
S := SimpleModules(A)[1];;
H := HomOverAlgebra(N,S);;
IsSplitMonomorphism(H[1]);
f := IsSplitEpimorphism(H[1]);
IsSplitEpimorphism(H[1]);
IsSplitMonomorphism(f);
###########
L := RightModuleOverPathAlgebra(A,[["a",[0,1]],["b",[0,1]],
Expand Down
131 changes: 130 additions & 1 deletion examples/examples_path_algebras.g
Original file line number Diff line number Diff line change
@@ -1 +1,130 @@
Q := Quiver( ["u","v"] , [ ["u","u","a"], ["u","v","b"], ["v","u","c"], ["v","v","d"] ] );F := Rationals;FQ := PathAlgebra(F,Q);##########IsPathAlgebra(FQ);##########QuiverOfPathAlgebra(FQ);##########FQ.a;FQ.v;elem := 2*FQ.a - 3*FQ.v;##########IsLeftUniform(elem);IsRightUniform(elem);IsUniform(elem);another := FQ.a*FQ.b + FQ.b*FQ.d*FQ.c*FQ.b*FQ.d;IsLeftUniform(another);IsRightUniform(another);IsUniform(another);##########elem := FQ.a*FQ.b*FQ.c + FQ.b*FQ.d*FQ.c+FQ.d*FQ.d;LeadingTerm(elem);LeadingCoefficient(elem);mon := LeadingMonomial(elem);mon in FQ;mon in Q;##########Q := Quiver( 1, [ [1,1,"a"], [1,1,"b"] ] );kQ := PathAlgebra(Rationals, Q);gens := GeneratorsOfAlgebra(kQ);a := gens[2];b := gens[3];relations := [a^2,a*b-b*a, b*b];I := Ideal(kQ,relations);A := kQ/I;IndecProjectiveModules(A); ##########gb := GBNPGroebnerBasis(relations,kQ);I := Ideal(kQ,gb);GroebnerBasis(I,gb);IndecProjectiveModules(A);A := kQ/I;IndecProjectiveModules(A);##########I := Ideal(FQ, [FQ.a - FQ.b*FQ.c, FQ.d*FQ.d]); GeneratorsOfIdeal(I);IsIdealInPathAlgebra(I);##########rels := [FQ.a - FQ.b*FQ.c, FQ.d*FQ.d];gb := GBNPGroebnerBasis(rels, FQ); I := Ideal(FQ, gb);GroebnerBasis(I, gb);quot := FQ/I;##########quot := FQ/I;IsQuotientOfPathAlgebra(quot);IsQuotientOfPathAlgebra(FQ);##########Q := Quiver(5, [ [1,2,"a"], [2,4,"b"], [3,2,"c"], [2,5,"d"] ]);A := PathAlgebra(Rationals, Q);IsFiniteTypeAlgebra(A);quo := A/[A.a*A.b, A.c*A.d];;IsFiniteTypeAlgebra(quo);##########elem := quot.a*quot.b;IsElementOfQuotientOfPathAlgebra(elem);IsElementOfQuotientOfPathAlgebra(FQ.a*FQ.b); ##########alg := NakayamaAlgebra([2,1], Rationals);QuiverOfPathAlgebra(alg);##########Q := Quiver(1, [ [1,1,"a"], [1,1,"b"] ]);; A := PathAlgebra(Rationals, Q);;IsSpecialBiserialAlgebra(A); IsStringAlgebra(A);rel1 := [A.a*A.b, A.a^2, A.b^2]; quo1 := A/rel1;;IsSpecialBiserialAlgebra(quo1); IsStringAlgebra(quo1);rel2 := [A.a*A.b-A.b*A.a, A.a^2, A.b^2]; quo2 := A/rel2;;IsSpecialBiserialAlgebra(quo2); IsStringAlgebra(quo2);rel3 := [A.a*A.b+A.b*A.a, A.a^2, A.b^2, A.b*A.a]; quo3 := A/rel3;;IsSpecialBiserialAlgebra(quo3); IsStringAlgebra(quo3);rel4 := [A.a*A.b, A.a^2, A.b^3]; quo4 := A/rel4;;IsSpecialBiserialAlgebra(quo4); IsStringAlgebra(quo4);##########Q := Quiver( [ "u", "v" ], [ [ "u", "u", "a" ], [ "u", "v", "b" ] ] );Qop := OppositeQuiver(Q);VerticesOfQuiver( Qop );ArrowsOfQuiver( Qop );OppositePath( Q.a * Q.b );IsIdenticalObj( Q, OppositeQuiver( Qop ) );OppositePath( Qop.b_op * Qop.a_op );##########Q := Quiver( [ "u", "v" ], [ [ "u", "u", "a" ], [ "u", "v", "b" ] ] );A := PathAlgebra( Rationals, Q );OppositePathAlgebra( A );OppositePathAlgebraElement( A.u + 2*A.a + 5*A.a*A.b );IsIdenticalObj( A, OppositePathAlgebra( OppositePathAlgebra( A ) ) );##########q1 := Quiver( [ "u1", "u2" ], [ [ "u1", "u2", "a" ] ] );q2 := Quiver( [ "v1", "v2", "v3" ], [ [ "v1", "v2", "b" ], [ "v2", "v3", "c" ] ] );q1_q2 := QuiverProduct( q1, q2 );q1_q2.u1_b * q1_q2.a_v2;IncludeInProductQuiver( [ q1.a, q2.b * q2.c ], q1_q2 );ProjectFromProductQuiver( 2, q1_q2.a_v1 * q1_q2.u2_b * q1_q2.u2_c );q1_q2_dec := QuiverProductDecomposition( q1_q2 );q1_q2_dec[ 1 ];q1_q2_dec[ 1 ] = q1;##########q1 := Quiver( [ "u1", "u2" ], [ [ "u1", "u2", "a" ] ] );q2 := Quiver( [ "v1", "v2", "v3", "v4" ], [ [ "v1", "v2", "b" ], [ "v1", "v3", "c" ], [ "v2", "v4", "d" ], [ "v3", "v4", "e" ] ] );fq1 := PathAlgebra( Rationals, q1 );fq2 := PathAlgebra( Rationals, q2 );I := Ideal( fq2, [ fq2.b * fq2.d - fq2.c * fq2.e ] );quot := fq2 / I;t := TensorProductOfAlgebras( fq1, quot );SimpleTensor( [ fq1.a, quot.b ], t );t_dec := TensorProductDecomposition( t );t_dec[ 1 ] = fq1;
Q := Quiver( ["u","v"] , [ ["u","u","a"], ["u","v","b"],
["v","u","c"], ["v","v","d"] ] );
F := Rationals;
FQ := PathAlgebra(F,Q);
##########
IsPathAlgebra(FQ);
##########
QuiverOfPathAlgebra(FQ);
##########
FQ.a;
FQ.v;
elem := 2*FQ.a - 3*FQ.v;
##########
IsLeftUniform(elem);
IsRightUniform(elem);
IsUniform(elem);
another := FQ.a*FQ.b + FQ.b*FQ.d*FQ.c*FQ.b*FQ.d;
IsLeftUniform(another);
IsRightUniform(another);
IsUniform(another);
##########
elem := FQ.a*FQ.b*FQ.c + FQ.b*FQ.d*FQ.c+FQ.d*FQ.d;
LeadingTerm(elem);
LeadingCoefficient(elem);
mon := LeadingMonomial(elem);
mon in FQ;
mon in Q;
##########
Q := Quiver( 1, [ [1,1,"a"], [1,1,"b"] ] );
kQ := PathAlgebra(Rationals, Q);
gens := GeneratorsOfAlgebra(kQ);
a := gens[2];
b := gens[3];
relations := [a^2,a*b-b*a, b*b];
A := kQ/relations;
IndecProjectiveModules(A);
##########
gb := GBNPGroebnerBasis(relations,kQ);
I := Ideal(kQ,gb);
GroebnerBasis(I,gb);
IndecProjectiveModules(A);
A := kQ/I;
IndecProjectiveModules(A);
##########
I := Ideal(FQ, [FQ.a - FQ.b*FQ.c, FQ.d*FQ.d]);
GeneratorsOfIdeal(I);
IsIdealInPathAlgebra(I);
##########
rels := [FQ.a - FQ.b*FQ.c, FQ.d*FQ.d];
gb := GBNPGroebnerBasis(rels, FQ);
I := Ideal(FQ, gb);
GroebnerBasis(I, gb);
quot := FQ/I;
##########
quot := FQ/I;
IsQuotientOfPathAlgebra(quot);
IsQuotientOfPathAlgebra(FQ);
##########
Q := Quiver(5, [ [1,2,"a"], [2,4,"b"], [3,2,"c"], [2,5,"d"] ]);
A := PathAlgebra(Rationals, Q);
IsFiniteTypeAlgebra(A);
quo := A/[A.a*A.b, A.c*A.d];;
IsFiniteTypeAlgebra(quo);
##########
elem := quot.a*quot.b;
IsElementOfQuotientOfPathAlgebra(elem);
IsElementOfQuotientOfPathAlgebra(FQ.a*FQ.b);
##########
alg := NakayamaAlgebra([2,1], Rationals);
QuiverOfPathAlgebra(alg);
##########
Q := Quiver(1, [ [1,1,"a"], [1,1,"b"] ]);;
A := PathAlgebra(Rationals, Q);;
IsSpecialBiserialAlgebra(A); IsStringAlgebra(A);
rel1 := [A.a*A.b, A.a^2, A.b^2];
quo1 := A/rel1;;
IsSpecialBiserialAlgebra(quo1); IsStringAlgebra(quo1);
rel2 := [A.a*A.b-A.b*A.a, A.a^2, A.b^2];
quo2 := A/rel2;;
IsSpecialBiserialAlgebra(quo2); IsStringAlgebra(quo2);
rel3 := [A.a*A.b+A.b*A.a, A.a^2, A.b^2, A.b*A.a];
quo3 := A/rel3;;
IsSpecialBiserialAlgebra(quo3); IsStringAlgebra(quo3);
rel4 := [A.a*A.b, A.a^2, A.b^3];
quo4 := A/rel4;;
IsSpecialBiserialAlgebra(quo4); IsStringAlgebra(quo4);
##########
Q := Quiver( [ "u", "v" ], [ [ "u", "u", "a" ],
[ "u", "v", "b" ] ] );
Qop := OppositeQuiver(Q);
VerticesOfQuiver( Qop );
ArrowsOfQuiver( Qop );
OppositePath( Q.a * Q.b );
IsIdenticalObj( Q, OppositeQuiver( Qop ) );
OppositePath( Qop.b_op * Qop.a_op );
##########
Q := Quiver( [ "u", "v" ], [ [ "u", "u", "a" ],
[ "u", "v", "b" ] ] );
A := PathAlgebra( Rationals, Q );
OppositePathAlgebra( A );
OppositePathAlgebraElement( A.u + 2*A.a + 5*A.a*A.b );
IsIdenticalObj( A,
OppositePathAlgebra( OppositePathAlgebra( A ) ) );
##########
q1 := Quiver( [ "u1", "u2" ], [ [ "u1", "u2", "a" ] ] );
q2 := Quiver( [ "v1", "v2", "v3" ],
[ [ "v1", "v2", "b" ],
[ "v2", "v3", "c" ] ] );
q1_q2 := QuiverProduct( q1, q2 );
q1_q2.u1_b * q1_q2.a_v2;
IncludeInProductQuiver( [ q1.a, q2.b * q2.c ], q1_q2 );
ProjectFromProductQuiver( 2, q1_q2.a_v1 * q1_q2.u2_b * q1_q2.u2_c );
q1_q2_dec := QuiverProductDecomposition( q1_q2 );
q1_q2_dec[ 1 ];
q1_q2_dec[ 1 ] = q1;
##########
q1 := Quiver( [ "u1", "u2" ], [ [ "u1", "u2", "a" ] ] );
q2 := Quiver( [ "v1", "v2", "v3", "v4" ],
[ [ "v1", "v2", "b" ],
[ "v1", "v3", "c" ],
[ "v2", "v4", "d" ],
[ "v3", "v4", "e" ] ] );
fq1 := PathAlgebra( Rationals, q1 );
fq2 := PathAlgebra( Rationals, q2 );
rels := [ fq2.b * fq2.d - fq2.c * fq2.e ];
quot := fq2 / rels;
t := TensorProductOfAlgebras( fq1, quot );
SimpleTensor( [ fq1.a, quot.b ], t );
t_dec := TensorProductDecomposition( t );
t_dec[ 1 ] = fq1;
4 changes: 2 additions & 2 deletions examples/examples_quivers.g
Original file line number Diff line number Diff line change
Expand Up @@ -54,13 +54,13 @@ ArrowsOfQuiver(q1_op);
Q := Quiver(6, [ [1,2],[1,1],[3,2],[4,5],[4,5] ]);
VerticesOfQuiver(Q);
FullSubquiver(Q, [Q.v1, Q.v2]);
ConnectedComponents(Q);
ConnectedComponentsOfQuiver(Q);
###############
q1 := Quiver(["u","v"],[["u","u","a"],["u","v","b"],
["v","u","c"],["v","v","d"]]);
IsPath(q1.b);
IsPath(q1.u);
IsVertex(q1.c);
IsQuiverVertex(q1.c);
IsZeroPath(q1.d);
###############
q1 := Quiver(["u","v"],[["u","u","a"],["u","v","b"],
Expand Down
2 changes: 1 addition & 1 deletion examples/examples_right_modules.g
Original file line number Diff line number Diff line change
Expand Up @@ -56,7 +56,7 @@ mat := [["a",[[1,2],[0,3],[1,5]]],["b",[[2,0],[3,0],[5,0]]],
["c",[[0,0],[1,0]]],["d",[[1,2],[0,1]]],["e",[[0,0,0],[0,0,0]]]];;
N := RightModuleOverPathAlgebra(A,mat);
##################
N2 := DirectSumOfModules([N,N]);
N2 := DirectSumOfQPAModules([N,N]);
proj := DirectSumProjections(N2);
inc := DirectSumInclusions(N2);
##################
Expand Down

0 comments on commit ca9d1b1

Please sign in to comment.