-
Notifications
You must be signed in to change notification settings - Fork 5.5k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
231 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,227 @@ | ||
import os | ||
import fire | ||
import asyncio | ||
import json | ||
import argparse | ||
import shutil | ||
from typing import Optional | ||
from metagpt.llm import LLM | ||
|
||
from metagpt.ext.sela.data.custom_task import get_mle_is_lower_better, get_mle_task_id | ||
from metagpt.ext.sela.runner.autogluon import GluonRunner | ||
from metagpt.ext.sela.runner.autosklearn import AutoSklearnRunner | ||
from metagpt.ext.sela.runner.custom import CustomRunner | ||
from metagpt.ext.sela.runner.mcts import MCTSRunner | ||
from metagpt.ext.sela.runner.random_search import RandomSearchRunner | ||
from metagpt.ext.sela.runner.runner import Runner | ||
|
||
from metagpt.ext.sela.evaluation.evaluation import ( | ||
node_evaluate_score_mlebench, | ||
node_evaluate_score_sela, | ||
) | ||
from metagpt.ext.sela.evaluation.visualize_mcts import get_tree_text | ||
from metagpt.ext.sela.runner.runner import Runner | ||
from metagpt.ext.sela.search.search_algorithm import MCTS, Greedy, Random | ||
|
||
|
||
class Sela: | ||
DEFAULT_CONFIG = { | ||
"name": "", | ||
"reflection": True, | ||
"no_reflection": False, | ||
"exp_mode": "mcts", | ||
"rollouts": 10, | ||
"load_tree": False, | ||
"role_timeout": 1000, | ||
"use_fixed_insights": False, | ||
"low_is_better": False, | ||
"start_task_id": 2, | ||
"from_scratch": False, | ||
"eval_func": "sela", | ||
"custom_dataset_dir": None, | ||
"max_depth": 4, | ||
"rs_mode": "single", | ||
"is_multimodal": True, | ||
"num_experiments": 1, | ||
"external_eval": True, | ||
"no_external_eval": False, | ||
"special_instruction": None, | ||
} | ||
|
||
def __init__(self, use_llm: bool = True): | ||
""" | ||
初始化 Sela 类。 | ||
Args: | ||
use_llm: 是否使用 LLM 来解析 requirement。 | ||
""" | ||
self.llm = LLM() if use_llm else None | ||
|
||
async def _parse_requirement(self, requirement: str) -> dict: | ||
""" | ||
使用 LLM 分析实验需求,提取实验配置和实验数据信息。 | ||
Args: | ||
requirement: 用户输入的实验需求描述。 | ||
Returns: | ||
dict: 包含实验配置和实验数据信息的字典。 | ||
""" | ||
if not self.llm: | ||
raise ValueError("LLM is not initialized. Cannot parse the requirement.") | ||
|
||
# 确保 `requirement` 是安全的字符串 | ||
sanitized_requirement = json.dumps(requirement) # 将字符串转为 JSON 安全字符串 | ||
|
||
prompt = f""" | ||
You are an assistant that helps configure machine learning experiments. | ||
Given the following requirement: | ||
{sanitized_requirement} | ||
Your task: | ||
1. Extract **experiment configurations** from the requirement if they are explicitly mentioned. | ||
For example, "rollouts: 10", "exp_mode: mcts", or "max_depth: 4". These should override default values. | ||
2. Extract **experiment data information** from the requirement. This includes: | ||
- **dataset**: The name of the dataset being used (e.g., "04_titanic"). | ||
- **metric**: The evaluation metric or scoring method mentioned (e.g., "f1", "rmse", "f1 weighted"). | ||
- **target_col**: Predict the target column `Survived` (e.g., "Survived"). | ||
- **user_requirement**: Any specific instructions or requirements for handling the dataset (e.g.,"Your goal is to predict the target column `Survived`." | ||
"Perform data analysis, data preprocessing, feature engineering, and modeling to predict the target. " | ||
"Report f1 on the eval data. Do not plot or make any visualizations.") | ||
Output a JSON object containing two parts: | ||
- "config": This is a dictionary containing the experiment configuration. Include only explicitly mentioned configurations. Use keys like: | ||
- "task": str (e.g., "titanic") | ||
- "exp_mode": str (e.g., "mcts", "rs", "base", "custom", "greedy", "autogluon", "random", "autosklearn") | ||
- "rollouts": int | ||
- "max_depth": int | ||
- "rs_mode": str (e.g., "single", "set") | ||
- "special_instruction": str (e.g., "text", "image") | ||
- "data_info": This is a dictionary containing the experiment data information with keys: | ||
- "dataset": str (e.g., "04_titanic") | ||
- "metric": str (e.g., "f1", "rmse", "f1 weighted") | ||
- "target_col": str (e.g., "Survived") | ||
- "user_requirement": str (e.g., Your goal is to predict the target column `Survived`." | ||
"Perform data analysis, data preprocessing, feature engineering, and modeling to predict the target. " | ||
"Report f1 on the eval data. Do not plot or make any visualizations.") | ||
Example output: | ||
{{ | ||
"config": {{ | ||
"task": "titanic", | ||
"exp_mode": "mcts", | ||
"rollouts": 10 | ||
}}, | ||
"data_info": {{ | ||
"dataset": "04_titanic", | ||
"metric": "f1", | ||
"target_col": "Predict the target column Survived", | ||
"user_requirement": Your goal is to predict the target column `Survived`. Perform data analysis, data preprocessing, feature engineering, and modeling to predict the target. " | ||
"Report f1 on the eval data. Do not plot or make any visualizations." | ||
}} | ||
}} | ||
Return only the JSON object. Do not include any comments or extra text. | ||
""" | ||
response = await self.llm.aask(prompt) | ||
print(f"LLM Response: {response}") | ||
|
||
parsed_response = self._parse_json(response) | ||
config_from_user = parsed_response.get("config", {}) | ||
data_info = parsed_response.get("data_info", {}) | ||
|
||
# 合并默认配置和用户提供的配置 | ||
config = {**self.DEFAULT_CONFIG, **config_from_user} | ||
return {"config": config, "data_info": data_info} | ||
|
||
@staticmethod | ||
def _parse_json(json_string: str) -> dict: | ||
""" | ||
解析 JSON 字符串,去除可能的 Markdown 标记。 | ||
""" | ||
json_string = json_string.strip() | ||
if json_string.startswith("```json"): | ||
json_string = json_string[7:].strip() | ||
if json_string.endswith("```"): | ||
json_string = json_string[:-3].strip() | ||
|
||
try: | ||
return json.loads(json_string) | ||
except json.JSONDecodeError: | ||
raise ValueError(f"Invalid JSON format: {json_string}") | ||
|
||
def _select_runner(self, config: argparse.Namespace, data_config: dict): | ||
""" | ||
根据配置选择适当的实验执行器。 | ||
Args: | ||
config: 从 LLM 解析出的实验配置。 | ||
Returns: | ||
实验执行器实例。 | ||
""" | ||
exp_mode = config.exp_mode | ||
if exp_mode == "mcts": | ||
return MCTSRunner(config, data_config) | ||
elif exp_mode == "greedy": | ||
return MCTSRunner(tree_mode="greedy") | ||
elif exp_mode == "random": | ||
return MCTSRunner(tree_mode="random") | ||
elif exp_mode == "rs": | ||
return RandomSearchRunner(config) | ||
elif exp_mode == "base": | ||
return Runner(config) | ||
elif exp_mode == "custom": | ||
return CustomRunner(config) | ||
else: | ||
raise ValueError(f"Invalid exp_mode: {exp_mode}") | ||
|
||
async def run(self, requirement: str, data_dir: Optional[str] = None): | ||
""" | ||
Args: | ||
requirement: 实验需求,描述目标任务。 | ||
data_dir: 数据目录。 | ||
""" | ||
if not os.path.exists(data_dir): | ||
raise FileNotFoundError(f"Dataset directory not found: {data_dir}") | ||
|
||
# 使用 LLM 解析需求 | ||
config_all = await self._parse_requirement(requirement) | ||
config_exp = config_all["config"] | ||
data_info = config_all["data_info"] | ||
|
||
# 构造默认的 data_config 文件 | ||
data_config = { | ||
"datasets_dir": data_dir, # 用户输入的数据目录路径 | ||
"work_dir": "../../workspace", # 默认的工作目录 | ||
"role_dir": "storage/SELA", # 存储角色路径 | ||
"datasets": {config_exp.get("task"): data_info}, # 数据集信息 | ||
} | ||
|
||
# 根据需求选择适当的实验执行器 | ||
runner = self._select_runner(argparse.Namespace(**config_exp), data_config) | ||
|
||
# 运行实验 | ||
await runner.run_experiment() | ||
|
||
|
||
async def main(): | ||
""" | ||
Main 函数作为入口,支持直接运行。 | ||
""" | ||
# 示例需求和数据路径 | ||
requirement = ("Optimize 04_titanic dataset using MCTS with 10 rollouts. " | ||
"Your goal is to predict the target column `Survived`." | ||
"Perform data analysis, data preprocessing, feature engineering, and modeling to predict the target. " | ||
"Report f1 on the eval data. Do not plot or make any visualizations.") | ||
|
||
data_dir = "/home/coder/project/chenxin/MetaGPT/metagpt/ext/sela/data/SELA-datasets" | ||
|
||
# 初始化 Sela 并运行 | ||
sela = Sela() | ||
await sela.run(requirement, data_dir) | ||
|
||
|
||
if __name__ == "__main__": | ||
fire.Fire(main) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters