Skip to content

Commit

Permalink
Add SorptivityDirichletProblem
Browse files Browse the repository at this point in the history
  • Loading branch information
gerlero committed Dec 19, 2023
1 parent e4a331e commit f4b5659
Show file tree
Hide file tree
Showing 3 changed files with 71 additions and 6 deletions.
1 change: 1 addition & 0 deletions docs/src/problems.md
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@ CurrentModule = Fronts
Problem
DirichletProblem
FlowrateProblem
SorptivityDirichletProblem
CauchyProblem
SorptivityCauchyProblem
FiniteProblem
Expand Down
61 changes: 61 additions & 0 deletions src/problems.jl
Original file line number Diff line number Diff line change
Expand Up @@ -158,6 +158,67 @@ end

monotonicity(prob::FlowrateProblem)::Int = -sign(prob.Qb)

"""
SorptivityDirichletProblem(eq; i, S[, ob]) <: Problem{typeof(eq)}
SorptivityDirichletProblem(D; i, S[, ob]) <: Problem{typeof(eq)}
Semi-infinite problem with a known initial condition and soprtivity.
# Arguments
- `eq::Equation`: governing equation.
- `D`: diffusivity function. Shortcut for `SorptivityDirichletProblem(DiffusionEquation(D), ...)`.
# Keyword arguments
- `i`: initial value.
- `S`: prescribed sorptivity.
- `ob=0`: boundary constant for an optional moving boundary. At time `t`, the boundary is located at `ob*√t`. Must be positive if `eq` is radial.
# Examples
```jldoctest; setup = :(using Fronts)
julia> D(θ) = θ^4
D (generic function with 1 method)
julia> prob = Fronts.SorptivityDirichletProblem(D, i=0, S=1)
⎧ ∂θ/∂t = ∂(D(θ)*∂θ/∂r)/∂r, r>0,t>0
⎨ θ(r,0) = 0, r>0
⎩ S = 1
```
"""
struct SorptivityDirichletProblem{Teq, _T, _To, _TS} <: Problem{Teq}
eq::Teq
i::_T
S::_TS
ob::_To
function SorptivityDirichletProblem(eq::Equation{1}; i, S, ob = 0)
new{typeof(eq), typeof(i), typeof(ob), typeof(S)}(eq, i, ob, S)
end
function SorptivityDirichletProblem(eq::Equation; i, S, ob)
@argcheck ob > zero(ob)
new{typeof(eq), typeof(i), typeof(ob), typeof(S)}(eq, i, ob, S)
end
end

function SorptivityDirichletProblem(D; i, S, ob = 0)
SorptivityDirichletProblem(DiffusionEquation(D), i = i, S = S, ob = ob)
end

function Base.show(io::IO, prob::SorptivityDirichletProblem)
if iszero(prob.ob)
println(io, "", prob.eq, ", r>0,t>0")
else
println(io, "", prob.eq, ", r>rb(t),t>0")
end
println(io, "", prob.eq.sym, "(r,0) = ", prob.i, ", r>0")
println(io, "⎩ S = ", prob.S)
if !iszero(prob.ob)
print(io, "with rb(t) = ", prob.ob, "*√t")
end
end

monotonicity(prob::SorptivityDirichletProblem)::Int = -sign(prob.S)

sorptivity(prob::SorptivityDirichletProblem) = prob.S

"""
CauchyProblem(eq; b, d_dob[, ob]) <: Problem{typeof(eq)}
CauchyProblem(D; b, d_dob[, ob]) <: Problem{DiffusionEquation{1}}
Expand Down
15 changes: 9 additions & 6 deletions src/shooting.jl
Original file line number Diff line number Diff line change
Expand Up @@ -91,7 +91,8 @@ function solve(prob::DirichletProblem, alg::BoltzmannODE = BoltzmannODE();
end

"""
solve(prob::FlowrateProblem[, BoltzmannODE; abstol, maxiters, b_hint]) -> Solution
solve(prob::FlowrateProblem[, alg::BoltzmannODE; abstol, maxiters, b_hint]) -> Solution
solve(prob::SorptivityDirichletProblem[, alg::BoltzmannODE; abstol, maxiters, b_hint, verbose]) -> Solution
Solve the problem `prob`.
Expand All @@ -108,12 +109,13 @@ Solve the problem `prob`.
GERLERO, G. S.; BERLI, C. L. A.; KLER, P. A. Open-source high-performance software packages for direct and inverse solving of horizontal capillary flow.
Capillarity, 2023, vol. 6, no. 2, p. 31-40.
See also: [`Solution`](@ref), [`BoltzmannODE`](@ref)
See also: [`Solution`](@ref), [`BoltzmannODE`](@ref), [`sorptivity`](@ref)
"""
function solve(prob::FlowrateProblem; alg::BoltzmannODE = BoltzmannODE(),
function solve(prob::Union{FlowrateProblem, SorptivityDirichletProblem},
alg::BoltzmannODE = BoltzmannODE();
abstol = 1e-3,
maxiters = 100,
verbose = true)
verbose = true) where {m}
@argcheck abstol zero(abstol)
@argcheck maxiters 0

Expand All @@ -124,12 +126,13 @@ function solve(prob::FlowrateProblem; alg::BoltzmannODE = BoltzmannODE(),
b_hint = prob.i - oneunit(prob.i) * monotonicity(prob)
end

ob = iszero(prob.ob) ? 1e-6 : prob.ob
ob = prob isa FlowrateProblem && iszero(prob.ob) ? 1e-6 : prob.ob

direction = monotonicity(prob)
limit = prob.i + direction * abstol
resid = prob.i - oneunit(prob.i) * monotonicity(prob)
S = 2prob.Qb / prob._αh / ob

S = prob isa FlowrateProblem ? 2prob.Qb / prob._αh / ob : prob.S

integrator = _init(SorptivityCauchyProblem(prob.eq, b = b_hint, S = S, ob = ob),
alg,
Expand Down

0 comments on commit f4b5659

Please sign in to comment.