Skip to content

一款运行于Elasticsearch之上的中文拼音智能分词插件,支持全拼、首字母、中文混合搜索

License

Notifications You must be signed in to change notification settings

gitchennan/elasticsearch-analysis-lc-pinyin

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

46 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LC Pinyin Analysis for Elasticsearch

Lc Pinyin版本

LC version ES version
master 5.3.0 -> master
5.3.0.1 5.3.0
5.2.2.1 5.2.2
5.2.0.1 5.2.0
5.1.2.1 5.1.2
5.1.1.1 5.1.1
5.0.2.1 5.0.2
5.0.1.2 5.0.1
5.0.1.1 5.0.1
2.4.2.1 2.4.2
2.2.2.1 2.2.2
1.4.5.2 1.4.5
1.4.5.1 1.4.5

Lc Pinyin介绍

elasticsearch-analysis-lc-pinyin是一款elasticsearch拼音分词插件,可以支持按照全拼、首字母,中文混合搜索。 例如我们在某宝搜索框中输入“jianpan” 可以搜索到关键字包含“键盘”的商品。不仅仅输入全拼,有时候我们输入首字母、拼音和首字母、中文和首字母的混合输入,比如:“键pan”、“j盘”、“jianp”、“jpan”、“jianp”、“jp” 等等,都应该匹配到键盘。通过elasticsearch-analysis-lc-pinyin这个插件就能做到类似的搜索

  • 此拼音插件主要用在短文档的搜索上,如文章的标题、作者,商品的品牌等,不建议用在长文档

分析器 - Analyzer

  • lc_index : 该分词器用于索引数据时指定,将中文转换为全拼和首字,同时保留中文
  • lc_search: 该分词器用于拼音搜索时指定,按最小拼音分词个数拆分拼音,优先拆分全拼

分词器 - Tokenizer

  • lc_index:参数 mode: full_pinyinfirst_letterchinese_char
  • lc_search:参数 mode: smart_pinyinsingle_letter

过滤器 - TokenFilter

  • lc_full_pinyin:将中文Token转全拼(支持多音字)
  • lc_first_letter:将中文Token转首字母(支持多音字)

过滤器使用示例

以下是使用ik分词结合拼音过滤器使用例子:

  1. 创建一个索引,并定义分析器
PUT /index
{
  "settings": {
    "analysis": {
      "analyzer": {
        "ik_letter_smart": {
          "type": "custom",
          "tokenizer": "ik_max_word",
          "filter": [
            "lc_first_letter"
          ]
        },
        "ik_py_smart": {
          "type": "custom",
          "tokenizer": "ik_max_word",
          "filter": [
            "lc_full_pinyin"
          ]
        }
      }
    }
  }
}
  1. 测试分词
curl -XGET 'http://192.168.0.109:9200/index/_analyze?analyzer=ik_py_smart&pretty&text=英雄难过美人关'

#返回词条:
{
  "tokens" : [
    {
      "token" : "yingxiongnanguomeirenguan",
      "start_offset" : 0,
      "end_offset" : 7,
      "type" : "CN_WORD",
      "position" : 0
    },
    {
      "token" : "yingxiongnanguo",
      "start_offset" : 0,
      "end_offset" : 4,
      "type" : "CN_WORD",
      "position" : 1
    },
    {
      "token" : "yingxiong",
      "start_offset" : 0,
      "end_offset" : 2,
      "type" : "CN_WORD",
      "position" : 2
    },
    {
      "token" : "nanguo",
      "start_offset" : 2,
      "end_offset" : 4,
      "type" : "CN_WORD",
      "position" : 3
    },
    {
      "token" : "meirenguan",
      "start_offset" : 4,
      "end_offset" : 7,
      "type" : "CN_WORD",
      "position" : 4
    },
    {
      "token" : "meiren",
      "start_offset" : 4,
      "end_offset" : 6,
      "type" : "CN_WORD",
      "position" : 5
    },
    {
      "token" : "guan",
      "start_offset" : 6,
      "end_offset" : 7,
      "type" : "CN_CHAR",
      "position" : 6
    }
  ]
}

分析器使用示例

1.创建一个索引index

curl -XPUT http://localhost:9200/index

2.创建类型brand的mapping

curl -XPOST http://localhost:9200/index/_mapping/brand -d'
{
  "brand": {
    "properties": {
      "name": {
        "type": "text",
        "analyzer": "lc_index",
        "search_analyzer": "lc_search",
        "term_vector": "with_positions_offsets"
      }
    }
  }
}'

3.索引一些互联网品牌

curl -XPOST http://localhost:9200/index/brand/1 -d'{"name":"百度"}'
curl -XPOST http://localhost:9200/index/brand/8 -d'{"name":"百度糯米"}'
curl -XPOST http://localhost:9200/index/brand/2 -d'{"name":"阿里巴巴"}'
curl -XPOST http://localhost:9200/index/brand/3 -d'{"name":"腾讯科技"}'
curl -XPOST http://localhost:9200/index/brand/4 -d'{"name":"网易游戏"}'
curl -XPOST http://localhost:9200/index/brand/9 -d'{"name":"大众点评"}'
curl -XPOST http://localhost:9200/index/brand/10 -d'{"name":"携程旅行网"}'

4.编写高亮查询DSL

此示例通过lc_search分词器配合match_phrase查询实现品牌的全拼搜索 搜索全拼关键字baidu,请求DSL如下:

curl -XPOST http://localhost:9200/index/brand/_search  -d'
{
    "query": {
        "match": {
          "name": {
            "query": "baidu",
            "analyzer": "lc_search",
            "type": "phrase"
          }
        }
    },
    "highlight" : {
        "pre_tags" : ["<tag1>"],
        "post_tags" : ["</tag1>"],
        "fields" : {
            "name" : {}
        }
    }
}'

匹配到百度百度糯米两个品牌 tip:百度排在百度糯米的前面,因为name字段长度更短 查询结果:

{
    "took": 18,
    "timed_out": false,
    "_shards": {
        "total": 1,
        "successful": 1,
        "failed": 0
    },
    "hits": {
        "total": 2,
        "max_score": 2.5751648,
        "hits": [
            {
                "_index": "index",
                "_type": "brand",
                "_id": "1",
                "_score": 2.5751648,
                "_source": {
                    "name": "百度"
                },
                "highlight": {
                    "name": [
                        "<tag1>百度</tag1>"
                    ]
                }
            }
            ,
            {
                "_index": "index",
                "_type": "brand",
                "_id": "8",
                "_score": 2.0601318,
                "_source": {
                    "name": "百度糯米"
                },
                "highlight": {
                    "name": [
                        "<tag1>百度</tag1>糯米"
                    ]
                }
            }
        ]
    }
}

此示例通过lc_search分词器配合match_phrase查询实现品牌的中文&全拼搜索 搜索全拼关键字xie程lu行wang,请求DSL如下:

curl -XPOST http://localhost:9200/index/brand/_search  -d'
{
    "query": {
        "match": {
          "name": {
            "query": "xie程lu行",
            "analyzer": "lc_search",
            "type": "phrase"
          }
        }
    },
    "highlight" : {
        "pre_tags" : ["<tag1>"],
        "post_tags" : ["</tag1>"],
        "fields" : {
            "name" : {}
        }
    }
}'

匹配到携程旅行网 结果如下:

#匹配到`携程旅行网` 结果如下:
{
    "took": 4,
    "timed_out": false,
    "_shards": {
        "total": 1,
        "successful": 1,
        "failed": 0
    },
    "hits": {
        "total": 1,
        "max_score": 4.5665164,
        "hits": [
            {
                "_index": "index",
                "_type": "brand",
                "_id": "10",
                "_score": 4.5665164,
                "_source": {
                    "name": "携程旅行网"
                },
                "highlight": {
                    "name": [
                        "<tag1>携程旅行</tag1>网"
                    ]
                }
            }
        ]
    }
}
# 此示例通过`lc_search`分词器配合`match_phrase`查询实现品牌的`首字母`搜索
# 此示例中也可以通过`lc_first_letter`分词器搜索,结果和`lc_search`一样
#
# 这两个分词器的主要区别:
#     lc_first_letterl 会把所有输入的字母拆分成单字母用于首字母匹配
#     lc_search        会优先把输入的字母串拆分成全拼,并找到一个最优拆分结果
#
# 搜索全拼关键字`albb`,请求DSL如下:
curl -XPOST http://localhost:9200/index/brand/_search  -d'
{
    "query": {
        "match": {
          "name": {
            "query": "albb",
            "analyzer": "lc_search",
            "type": "phrase"
          }
        }
    },
    "highlight" : {
        "pre_tags" : ["<tag1>"],
        "post_tags" : ["</tag1>"],
        "fields" : {
            "name" : {}
        }
    }
}'

匹配到阿里巴巴,结果如下:

{
    "took": 4,
    "timed_out": false,
    "_shards": {
        "total": 1,
        "successful": 1,
        "failed": 0
    },
    "hits": {
        "total": 1,
        "max_score": 3.9560113,
        "hits": [
            {
                "_index": "index",
                "_type": "brand",
                "_id": "2",
                "_score": 3.9560113,
                "_source": {
                    "name": "阿里巴巴"
                },
                "highlight": {
                    "name": [
                        "<tag1>阿里巴巴</tag1>"
                    ]
                }
            }
        ]
    }
}
//java api实现
//该查询会匹配`阿里巴巴`这条数据
QueryBuilder pinyinQueryBuilder =  QueryBuilders.matchPhraseQuery("name", "ali巴b").analyzer("lc_search");
        SearchRequestBuilder requestBuilder = client.prepareSearch("index").setTypes("brand");
        requestBuilder.setQuery(pinyinQueryBuilder)
                .setHighlighterPreTags("<tag1>")
                .setHighlighterPostTags("</tag1>")
                .addHighlightedField("name")
                .execute().actionGet();
                
                
//该查询会匹配`大众点评`这条数据
QueryBuilder pinyinQueryBuilder =  QueryBuilders.matchPhraseQuery("name", "dzdp").analyzer("lc_first_letter");
        SearchRequestBuilder requestBuilder = client.prepareSearch("index").setTypes("brand");
        requestBuilder.setQuery(pinyinQueryBuilder)
                .setHighlighterPreTags("<tag1>")
                .setHighlighterPostTags("</tag1>")
                .addHighlightedField("name")
                .execute().actionGet();
                
//该查询也会匹配`大众点评`这条数据
QueryBuilder pinyinQueryBuilder =  QueryBuilders.matchPhraseQuery("name", "dzdp").analyzer("lc_search");
        SearchRequestBuilder requestBuilder = client.prepareSearch("index").setTypes("brand");
        requestBuilder.setQuery(pinyinQueryBuilder)
                .setHighlighterPreTags("<tag1>")
                .setHighlighterPostTags("</tag1>")
                .addHighlightedField("name")
                .execute().actionGet();

作者: @陈楠 Email: [email protected]

<完>

About

一款运行于Elasticsearch之上的中文拼音智能分词插件,支持全拼、首字母、中文混合搜索

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages