Skip to content

goncalorafaria/expkit-core

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ExpKit

ExpKit is a flexible experiment management framework for machine learning projects, providing easy storage, retrieval, and evaluation of experimental results.

Features

  • Multiple storage backends (Disk, Zip, Memory, Mongo)
  • Caching support with ROCache
  • Flexible metadata management
  • Batch processing of inputs/outputs
  • Evaluation metrics computation
  • Query interface for experiment retrieval

Installation

pip install expkit-core

Quick Start

Creating an Experiment

from expkit import Exp, DiskStorage

# Configure experiment metadata
meta = {
    "steps": 1000,
    "temperature": 0.7,
    "n": 5,
    "model_path": "path/to/model",
    "batch_size": 32,
}

# Create experiment with disk storage
experiment = Exp(
    storage=DiskStorage(save_path, "rw"),
    meta=meta
)

Adding Data

# Add input/output instances
experiment.add_instances(
    inputs=["input1", "input2", "input3"],
    outputs=["output1", "output2", "output3"]
)

# Add evaluation scores
experiment.add_eval("accuracy", [0.85, 0.92, 0.88])

Loading and Querying Experiments

from expkit import ZipStorage, ExpSetup

# Initialize storage
storage = ZipStorage(base_dir="path/to/outputs", mode="r")

# Create experiment setup
setup = ExpSetup(storage=storage)

# Query experiments
results = setup.query({
   "split":"test",
})

Working with Results

# Access experiment metadata
model_path = exp.get("model_path")

# Get instances
data = exp.instances()

# Get evaluation results
values = exp.get_eval(key)

Storage Backends

ExpKit supports multiple storage backends:

  • DiskStorage: Stores experiments as files on disk
  • ZipStorage: Stores experiments in zip archives
  • MongoStorage: Stores experiments in mongo server
  • MemoryStorage: Keeps experiments in memory
  • ROCache: Caching layer that can wrap other storage backends

Evaluation Operations

You can define custom evaluation operations:

setup = ExpSetup(
    storage=storage,
    ops={
        "mean-reward-1": EvalTotalMean(
            entry_key="scores",
            eval_key=eval_key,
            n=1
        )
    }
)

# Run evaluation operations
setup.run_ops()


# Access results
first_exp_reward = setup[0].get("mean-reward-1")

# Transform experiments
mapped_results = setup.map(lambda exp: {
    "reward": exp.get("mean-reward-1"),
    "model": exp.get("model_path")
})

# Filter experiments
filtered = setup.filter(lambda exp: exp.get("temperature") > 0.5)

# Sort experiments
sorted_exps = setup.sort("temperature")  # ascending order

Contributing

Contributions are welcome! Please read our contributing guidelines and submit pull requests to our repository.

About

Package for managing research experiments

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages