Skip to content

Commit

Permalink
Add linear program solver based on the restarted Halpern primal-dual …
Browse files Browse the repository at this point in the history
…hybrid gradient (rHPDHG) algorithm.
  • Loading branch information
carlosgmartin committed Dec 9, 2024
1 parent 3d8c391 commit d080f09
Show file tree
Hide file tree
Showing 12 changed files with 591 additions and 3 deletions.
1 change: 1 addition & 0 deletions .pylintrc
Original file line number Diff line number Diff line change
Expand Up @@ -129,6 +129,7 @@ disable=R,
wrong-import-order,
xrange-builtin,
zip-builtin-not-iterating,
invalid-name,


[REPORTS]
Expand Down
12 changes: 12 additions & 0 deletions docs/api/linprog.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
Linear programming
==================

.. currentmodule:: optax.linprog

.. autosummary::
rhpdhg


Restarted Halpern primal-dual hybrid gradient method
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. autofunction:: rhpdhg
19 changes: 18 additions & 1 deletion docs/gallery.rst
Original file line number Diff line number Diff line change
Expand Up @@ -209,7 +209,7 @@
.. only:: html

.. image:: /images/examples/linear_assignment_problem.png
:alt:
:alt: Linear assignment problem.

:doc:`_collections/examples/linear_assignment_problem`

Expand All @@ -219,6 +219,23 @@
</div>


.. raw:: html

<div class="sphx-glr-thumbcontainer" tooltip="Linear programming.">

.. only:: html

.. image:: /images/examples/linear_programming.png
:alt: Linear programming.

:doc:`_collections/examples/linear_programming`

.. raw:: html

<div class="sphx-glr-thumbnail-title">Linear programming.</div>
</div>


.. raw:: html

</div>
Expand Down
Binary file added docs/images/examples/linear_programming.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
1 change: 1 addition & 0 deletions docs/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -54,6 +54,7 @@ for instructions on installing JAX.
:caption: 📖 Reference
:maxdepth: 2

api/linprog
api/assignment
api/optimizers
api/transformations
Expand Down
229 changes: 229 additions & 0 deletions examples/linear_programming.ipynb

Large diffs are not rendered by default.

2 changes: 2 additions & 0 deletions optax/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@

from optax import assignment
from optax import contrib
from optax import linprog
from optax import losses
from optax import monte_carlo
from optax import perturbations
Expand Down Expand Up @@ -364,6 +365,7 @@
"lion",
"linear_onecycle_schedule",
"linear_schedule",
"linprog",
"log_cosh",
"lookahead",
"LookaheadParams",
Expand Down
2 changes: 1 addition & 1 deletion optax/_src/alias.py
Original file line number Diff line number Diff line change
Expand Up @@ -2482,7 +2482,7 @@ def lbfgs(
... )
... params = optax.apply_updates(params, updates)
... print('Objective function: ', f(params))
Objective function: 7.5166864
Objective function: 7.516686...
Objective function: 7.460699e-14
Objective function: 2.6505726e-28
Objective function: 0.0
Expand Down
19 changes: 19 additions & 0 deletions optax/linprog/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
# Copyright 2024 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""The linear programming sub-package."""

# pylint:disable=g-importing-member

from optax.linprog._rhpdhg import solve_general as rhpdhg
211 changes: 211 additions & 0 deletions optax/linprog/_rhpdhg.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,211 @@
# Copyright 2024 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""The restarted Halpern primal-dual hybrid gradient method."""

from jax import lax, numpy as jnp
from optax import tree_utils as otu


def solve_canonical(
c, A, b, iters, reflect=True, restarts=True, tau=None, sigma=None
):
r"""Solves a linear program using the restarted Halpern primal-dual hybrid
gradient (RHPDHG) method.
Minimizes :math:`c \cdot x` subject to :math:`A x = b` and :math:`x \geq 0`.
See also `MPAX <https://github.com/MIT-Lu-Lab/MPAX>`_.
Args:
c: Cost vector.
A: Equality constraint matrix.
b: Equality constraint vector.
iters: Number of iterations to run the solver for.
reflect: Use reflection. See paper for details.
restarts: Use restarts. See paper for details.
tau: Primal step size. See paper for details.
sigma: Dual step size. See paper for details.
Returns:
A dictionary whose entries are as follows:
- primal: The final primal solution.
- dual: The final dual solution.
- primal_iterates: The primal iterates.
- dual_iterates: The dual iterates.
Examples:
>>> from jax import numpy as jnp
>>> import optax
>>> c = -jnp.array([2, 1])
>>> A = jnp.zeros([0, 2])
>>> b = jnp.zeros(0)
>>> G = jnp.array([[3, 1], [1, 1], [1, 4]])
>>> h = jnp.array([21, 9, 24])
>>> x = optax.linprog.rhpdhg(c, A, b, G, h, 1_000_000)['primal']
>>> print(x[0])
5.99...
>>> print(x[1])
2.99...
References:
Haihao Lu, Jinwen Yang, `Restarted Halpern PDHG for Linear Programming
<https://arxiv.org/abs/2407.16144>`_, 2024
"""

if tau is None or sigma is None:
A_norm = jnp.linalg.norm(A, axis=(0, 1), ord=2)
if tau is None:
tau = 1 / (2 * A_norm)
if sigma is None:
sigma = 1 / (2 * A_norm)

def T(z):
# primal dual hybrid gradient (PDHG)
x, y = z
xn = x + tau * (y @ A - c)
xn = xn.clip(min=0)
yn = y + sigma * (b - A @ (2 * xn - x))
return xn, yn

def H(z, k, z0):
# Halpern PDHG
Tz = T(z)
if reflect:
zc = otu.tree_sub(otu.tree_scalar_mul(2, Tz), z)
else:
zc = Tz
kp2 = k + 2
zn = otu.tree_add(
otu.tree_scalar_mul((k + 1) / kp2, zc),
otu.tree_scalar_mul(1 / kp2, z0),
)
return zn, Tz

def update(carry, _):
z, k, z0, d0 = carry
zn, Tz = H(z, k, z0)

if restarts:
d = otu.tree_l2_norm(otu.tree_sub(z, Tz), squared=True)
restart = d <= d0 * jnp.exp(-2)
new_carry = otu.tree_where(
restart,
(zn, 0, zn, d),
(zn, k + 1, z0, d0),
)
else:
new_carry = zn, k + 1, z0, d0

return new_carry, z

def run():
m, n = A.shape
x = jnp.zeros(n)
y = jnp.zeros(m)
z0 = x, y
d0 = otu.tree_l2_norm(otu.tree_sub(z0, T(z0)), squared=True)
(z, _, _, _), zs = lax.scan(update, (z0, 0, z0, d0), length=iters)
x, y = z
xs, ys = zs
return {
"primal": x,
"dual": y,
"primal_iterates": xs,
"dual_iterates": ys,
}

return run()


def general_to_canonical(c, A, b, G, h):
"""Converts a linear program from general form to canonical form.
The solution to the new linear program will consist of the concatenation of
- the positive part of x
- the negative part of x
- slacks
That is, we go from
Minimize c · x subject to
A x = b
G x ≤ h
to
Minimize c · (x⁺ - x⁻) subject to
A (x⁺ - x⁻) = b
G (x⁺ - x⁻) + s = h
x⁺, x⁻, s ≥ 0
Args:
c: Cost vector.
A: Equality constraint matrix.
b: Equality constraint vector.
G: Inequality constraint matrix.
h: Inequality constraint vector.
Returns:
A triple (c', A', b') representing the corresponding canonical form.
"""
c_can = jnp.concatenate([c, -c, jnp.zeros(h.size)])
G_ = jnp.concatenate([G, -G, jnp.eye(h.size)], 1)
A_ = jnp.concatenate([A, -A, jnp.zeros([b.size, h.size])], 1)
A_can = jnp.concatenate([A_, G_], 0)
b_can = jnp.concatenate([b, h])
return c_can, A_can, b_can


def solve_general(
c, A, b, G, h, iters, reflect=True, restarts=True, tau=None, sigma=None
):
r"""Solves a linear program using the restarted Halpern primal-dual hybrid
gradient (RHPDHG) method.
Minimizes :math:`c \cdot x` subject to :math:`A x = b` and :math:`G x \leq h`.
See also `MPAX <https://github.com/MIT-Lu-Lab/MPAX>`_.
Args:
c: Cost vector.
A: Equality constraint matrix.
b: Equality constraint vector.
G: Inequality constraint matrix.
h: Inequality constraint vector.
iters: Number of iterations to run the solver for.
reflect: Use reflection. See paper for details.
restarts: Use restarts. See paper for details.
tau: Primal step size. See paper for details.
sigma: Dual step size. See paper for details.
Returns:
A dictionary whose entries are as follows:
- primal: The final primal solution.
- slacks: The final primal slack values.
- canonical_result: The result for the canonical program that was used
internally to find this solution. See paper for details.
References:
Haihao Lu, Jinwen Yang, `Restarted Halpern PDHG for Linear Programming
<https://arxiv.org/abs/2407.16144>`_, 2024
"""
canonical = general_to_canonical(c, A, b, G, h)
result = solve_canonical(*canonical, iters, reflect, restarts, tau, sigma)
x_pos, x_neg, slacks = jnp.split(result["primal"], [c.size, c.size * 2])
return {
"primal": x_pos - x_neg,
"slacks": slacks,
"canonical_result": result,
}
Loading

0 comments on commit d080f09

Please sign in to comment.