-
Notifications
You must be signed in to change notification settings - Fork 16
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Showing
9 changed files
with
450 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,43 @@ | ||
"""Demo Pipeline. | ||
This file creates a TFrecord dataset and converts it to ArrayRecord on GCS | ||
""" | ||
|
||
import apache_beam as beam | ||
from apache_beam.coders import coders | ||
from . import dofns | ||
from . import example | ||
from . import options | ||
|
||
|
||
## Grab CLI arguments. | ||
## Override by passing args/pipeline_options to the function manually. | ||
args, pipeline_options = options.get_arguments() | ||
|
||
|
||
def main(): | ||
p1 = beam.Pipeline(options=pipeline_options) | ||
initial = (p1 | ||
| 'Create a set of TFExamples' >> beam.Create( | ||
example.generate_movie_examples() | ||
) | ||
| 'Write TFRecords' >> beam.io.WriteToTFRecord( | ||
args['input'], | ||
coder=coders.ToBytesCoder(), | ||
num_shards=4, | ||
file_name_suffix='.tfrecord' | ||
) | ||
| 'Read shards from GCS' >> beam.io.ReadAllFromTFRecord( | ||
with_filename=True) | ||
| 'Group with Filename' >> beam.GroupByKey() | ||
| 'Write to ArrayRecord in GCS' >> beam.ParDo( | ||
dofns.ConvertToArrayRecordGCS(), | ||
args['output'], | ||
overwrite_extension=True)) | ||
|
||
return p1, initial | ||
|
||
|
||
if __name__ == '__main__': | ||
demo_pipeline = main() | ||
demo_pipeline.run() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,106 @@ | ||
"""Helper file for generating TF/ArrayRecords and writing them to disk.""" | ||
|
||
import os | ||
from array_record.python.array_record_module import ArrayRecordWriter | ||
import tensorflow as tf | ||
from . import testdata | ||
|
||
|
||
def generate_movie_examples(): | ||
"""Create a list of TF examples from the dummy data above and return it. | ||
Returns: | ||
TFExample object | ||
""" | ||
|
||
examples = [] | ||
for example in testdata.data: | ||
examples.append( | ||
tf.train.Example( | ||
features=tf.train.Features( | ||
feature={ | ||
'Age': tf.train.Feature( | ||
int64_list=tf.train.Int64List(value=[example['Age']])), | ||
'Movie': tf.train.Feature( | ||
bytes_list=tf.train.BytesList( | ||
value=[ | ||
m.encode('utf-8') for m in example['Movie']])), | ||
'Movie Ratings': tf.train.Feature( | ||
float_list=tf.train.FloatList( | ||
value=example['Movie Ratings'])), | ||
'Suggestion': tf.train.Feature( | ||
bytes_list=tf.train.BytesList( | ||
value=[example['Suggestion'].encode('utf-8')])), | ||
'Suggestion Purchased': tf.train.Feature( | ||
float_list=tf.train.FloatList( | ||
value=[example['Suggestion Purchased']])), | ||
'Purchase Price': tf.train.Feature( | ||
float_list=tf.train.FloatList( | ||
value=[example['Purchase Price']])) | ||
} | ||
) | ||
) | ||
) | ||
|
||
return(examples) | ||
|
||
|
||
def generate_serialized_movie_examples(): | ||
"""Return a serialized version of the above data for byte insertion.""" | ||
|
||
return [example.SerializeToString() for example in generate_movie_examples()] | ||
|
||
|
||
def write_example_to_tfrecord(example, file_path): | ||
"""Write example(s) to a single TFrecord file.""" | ||
|
||
with tf.io.TFRecordWriter(file_path) as writer: | ||
writer.write(example.SerializeToString()) | ||
|
||
|
||
# Write example(s) to a single ArrayRecord file | ||
def write_example_to_arrayrecord(example, file_path): | ||
writer = ArrayRecordWriter(file_path, 'group_size:1') | ||
writer.write(example.SerializeToString()) | ||
writer.close() | ||
|
||
|
||
def kitty_tfrecord(prefix=''): | ||
"""Create a TFRecord from a cat pic on the Internet. | ||
This is mainly for testing; probably don't use it. | ||
Args: | ||
prefix: A file directory in string format. | ||
""" | ||
|
||
cat_in_snow = tf.keras.utils.get_file( | ||
'320px-Felis_catus-cat_on_snow.jpg', | ||
'https://storage.googleapis.com/download.tensorflow.org/example_images/320px-Felis_catus-cat_on_snow.jpg') | ||
|
||
image_labels = { | ||
cat_in_snow: 0 | ||
} | ||
|
||
image_string = open(cat_in_snow, 'rb').read() | ||
label = image_labels[cat_in_snow] | ||
image_shape = tf.io.decode_jpeg(image_string).shape | ||
|
||
feature = { | ||
'height': tf.train.Feature(int64_list=tf.train.Int64List( | ||
value=[image_shape[0]])), | ||
'width': tf.train.Feature(int64_list=tf.train.Int64List( | ||
value=[image_shape[1]])), | ||
'depth': tf.train.Feature(int64_list=tf.train.Int64List( | ||
value=[image_shape[2]])), | ||
'label': tf.train.Feature(int64_list=tf.train.Int64List( | ||
value=[label])), | ||
'image_raw': tf.train.Feature(bytes_list=tf.train.BytesList( | ||
value=[image_string])) | ||
} | ||
|
||
example = tf.train.Example(features=tf.train.Features(feature=feature)) | ||
|
||
record_file = os.path.join(prefix, 'kittymeow.tfrecord') | ||
with tf.io.TFRecordWriter(record_file) as writer: | ||
writer.write(example.SerializeToString()) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,13 @@ | ||
# Execute this via BASH to run a full demo that creates TFRecords and converts them | ||
|
||
#!/bin/bash | ||
|
||
|
||
# Set bucket info below. Uncomment lower lines and set values to use Dataflow. | ||
python -m array_record.beam.demo \ | ||
--input="gs://<YOUR_INPUT_BUCKET>/records/movies" \ | ||
--output="gs://<YOUR_OUTPUT_BUCKET>/records/" \ | ||
# --region="<YOUR_REGION>" \ | ||
# --runner="DataflowRunner" \ | ||
# --project="<YOUR_PROJECT>" \ | ||
# --requirements_file="requirements.txt" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,29 @@ | ||
"""Execute this to convert an existing set of TFRecords to ArrayRecords.""" | ||
|
||
|
||
from apache_beam.options import pipeline_options | ||
from array_record.beam.pipelines import convert_tf_to_arrayrecord_gcs | ||
|
||
## Set input and output patterns as specified | ||
input_pattern = 'gs://<YOUR_INPUT_BUCKET>/records/*.tfrecord' | ||
output_path = 'gs://<YOUR_OUTPUT_BUCKET>/records/' | ||
|
||
args = {'input': input_pattern, 'output': output_path} | ||
|
||
## Set pipeline options and uncomment in main() to run in Dataflow | ||
pipeline_options = pipeline_options.PipelineOptions( | ||
runner='DataflowRunner', | ||
project='<YOUR_PROJECT>', | ||
region='<YOUR_REGION>', | ||
requirements_file='requirements.txt' | ||
) | ||
|
||
|
||
def main(): | ||
convert_tf_to_arrayrecord_gcs( | ||
args=args, | ||
# pipeline_options=pipeline_options | ||
).run() | ||
|
||
if __name__ == '__main__': | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,29 @@ | ||
"""Execute this to convert TFRecords to ArrayRecords using the disk Sink.""" | ||
|
||
|
||
from apache_beam.options import pipeline_options | ||
from array_record.beam.pipelines import convert_tf_to_arrayrecord_disk_match_shards | ||
|
||
## Set input and output patterns as specified | ||
input_pattern = 'gs://<YOUR_INPUT_BUCKET>/records/*.tfrecord' | ||
output_path = 'records/movies' | ||
|
||
args = {'input': input_pattern, 'output': output_path} | ||
|
||
## Set pipeline options and uncomment in main() to run in Dataflow | ||
pipeline_options = pipeline_options.PipelineOptions( | ||
runner='DataflowRunner', | ||
project='<YOUR_PROJECT>', | ||
region='<YOUR_REGION>', | ||
requirements_file='requirements.txt' | ||
) | ||
|
||
|
||
def main(): | ||
convert_tf_to_arrayrecord_disk_match_shards( | ||
args=args, | ||
# pipeline_options=pipeline_options | ||
).run() | ||
|
||
if __name__ == '__main__': | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
google-cloud-storage==2.11.0 | ||
tensorflow==2.14.0 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,26 @@ | ||
"""Handler for Pipeline and Beam options that allows for cleaner importing.""" | ||
|
||
|
||
import argparse | ||
from apache_beam.options import pipeline_options | ||
|
||
|
||
def get_arguments(): | ||
"""Simple external wrapper for argparse that allows for manual construction. | ||
Returns: | ||
1. A dictionary of known args for use in pipelines | ||
2. The remainder of the arguments in PipelineOptions format | ||
""" | ||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument( | ||
'--input', | ||
help='The file pattern for the input TFRecords.',) | ||
parser.add_argument( | ||
'--output', | ||
help='The path prefix for output ArrayRecords.') | ||
|
||
args, beam_args = parser.parse_known_args() | ||
return(args.__dict__, pipeline_options.PipelineOptions(beam_args)) |
Oops, something went wrong.