Skip to content

Commit

Permalink
Improve IPU PjRt client XLA non-standard layout handling.
Browse files Browse the repository at this point in the history
This PR is adding additional test coverage checking the IPU PjRt backend
can handle properly non-standard layouts for host inputs, not raising
an error and returning the proper result.
  • Loading branch information
balancap committed Sep 16, 2023
1 parent be67565 commit 2972e05
Showing 1 changed file with 122 additions and 0 deletions.
122 changes: 122 additions & 0 deletions tests/ipu/shape_layout_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,122 @@
# Copyright (c) 2022 Graphcore Ltd. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from jax._src import test_util as jtu
# from functools import partial
from typing import Any
import ctypes

import numpy as np
import numpy.testing as npt
import jax
from absl.testing import parameterized

from jax.config import config
from jax.lib import xla_extension as xe
# from jaxlib.ipu_xla_client import IpuPjRtDevice


def make_xla_shape(shape: Any, layout) -> xe.Shape:
"""Build XLA shape with layout.
"""
return xe.Shape.array_shape(xe.PrimitiveType.F32, shape, layout)


def make_array_with_layout(data: np.ndarray, layout: Any, device: Any):
"""Build a JAX array with a specific layout, data and device.
"""
from jax._src.device_array import make_device_array

data = np.asarray(data)
assert data.dtype == np.float32
xla_shape = xe.Shape.array_shape(xe.PrimitiveType.F32, data.shape, layout)
# Create empty buffer with XLA shape + layout.
client = device.client
buffer = client.create_uninitialized_buffer(xla_shape)
# Read-write buffer view.
buffer_ptr = np.asarray(buffer).ctypes.data_as(ctypes.POINTER(ctypes.c_float))
buffer_view = np.ctypeslib.as_array(buffer_ptr, shape=data.shape)
# Fix the strides of the array!
buffer_view = np.lib.stride_tricks.as_strided(
buffer_view, buffer_view.shape,
np.asarray(buffer).strides
)
# Copy data into the buffer.
buffer_view[:] = data[:]
# Build final JAX array.
aval = jax.ShapedArray(data.shape, dtype=data.dtype)
array = make_device_array(aval, device, buffer)
return array


class IpuXlaShapeLayoutTest(jtu.JaxTestCase):

def setUp(self):
super().setUp()
# self.ipu_device = jax.devices("ipu")[0]
self.is_ipu_model = config.FLAGS.jax_ipu_use_model
self.seed = 42
np.random.seed(self.seed)

@parameterized.named_parameters(
jtu.cases_from_list({
"testcase_name": b,
"backend": b
} for b in ["cpu", "ipu"])
)
def test__make_array_with_layout__proper_data_layout(self, backend):
device = jax.devices(backend)[0]
data = np.random.rand(2, 3, 4).astype(np.float32)
layout = (1, 2, 0)
arr = make_array_with_layout(data, layout, device)
expected_shape = make_xla_shape(data.shape, layout)

# Make sure we are getting everything right! => different layout from standard C
self.assertEqual(arr.device_buffer.xla_shape(), expected_shape)
self.assertNotEqual(np.asarray(arr).strides, data.strides)
self.assertEqual(arr.device(), device)
npt.assert_array_equal(arr, data)

@parameterized.named_parameters(
jtu.cases_from_list({
"testcase_name": str(layout),
"layout": layout
} for layout in [(1, 2, 0), (1, 0, 2), (0, 1, 2)])
)
def test__fn_change_xla_layout__proper_result(self, layout):
# Not passing on CPU backend. Maybe because you can never normally
# have a non-standard layout on CPU?
backend = "ipu"
device = jax.devices("cpu")[0]

data0 = np.random.rand(2, 3, 4).astype(np.float32)
data1 = np.random.rand(2, 3, 4).astype(np.float32)

arr0 = jax.device_put(data0, device)
arr1a = jax.device_put(data1, device)
arr1b = make_array_with_layout(data1, layout, device)

def fn(x, y):
return x + y

# Same jitted function should be compatible with different layouts.
fn = jax.jit(fn, backend=backend)
# Major to minor layout.
out1a = fn(arr0, arr1a)
# Custom buffer layout.
out1b = fn(arr0, arr1b)

npt.assert_array_equal(arr1a, arr1b)
npt.assert_array_equal(out1a, out1b)
npt.assert_array_equal(out1b, data0 + data1)

0 comments on commit 2972e05

Please sign in to comment.