This repository is based on the manuscript "Wasserstein distance-based auto-encoder tracking", under reviewing in the journal NEPL.
- Anaconda
- Pytorch
- visdom
- Agumentor
conda install pytorch torchvision cudatoolkit=10.2 -c pytorch
You can train the Auto Encoder by yourself using: https://github.com/wahahamyt/train_WAE.git.
This code also integrated in this repository.
We also provided the pretrained auto encoder weights:
- Baidu Disk:
- 2048 z Dimension (2.3GB):https://pan.baidu.com/s/1yEFpTF9oOHFZtXAedxr0Ow Code:
91pn
- 256 z Dimension (493MB): https://pan.baidu.com/s/1zMhTGUIYcqroXDKUFPvBqg Code:
7t41
- 2048 z Dimension (2.3GB):https://pan.baidu.com/s/1yEFpTF9oOHFZtXAedxr0Ow Code:
- Google Drive:
- 2048 z Dimension (2.3GB):https://drive.google.com/file/d/1g1GMVQeEKSiBboLDm26qArRP5_g8O-dO/view?usp=sharing
- 256 z Dimension (493MB): https://drive.google.com/file/d/1DeGPatiyGh52TWl4O7cOrdMZCFvDEvdT/view?usp=sharing
After downloaded the weights, it should be renamed as last
, then moved to the folder net/weights/
.
Pycharm is recommended for avoiding some path issues (At least 6GB of GPU memory is required [under 2048 z dimension]).
tracking/run_tracker.py
OTB protocal: http://cvlab.hanyang.ac.kr/tracker_benchmark/datasets.html
LaSOT protocal: https://github.com/HengLan/LaSOT_Evaluation_Toolkit
TC128 protocal: http://www.dabi.temple.edu/~hbling/data/TColor-128/TColor-128.html
If you're using this code in a publication, please cite our paper.
Xu, L., Wei, Y., Dong, C. et al. Wasserstein Distance-Based Auto-Encoder Tracking. Neural Process Lett (2021). https://doi.org/10.1007/s11063-021-10507-9