-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
17 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,3 +1,19 @@ | ||
# HDMF-AI - an HDMF schema and API for AI/ML workflows | ||
|
||
![Schema](paper/schema.png) | ||
`HDMF-AI` is a schema and Python API for storing the common results of AI algorithms in a standardized way within the Hierarchical Data Modeling Framework (HDMF). | ||
|
||
`HDMF-AI` is designed to be flexible and extensible, allowing users to store a range of AI and machine learning results and metadata, such as from classification, regression, and clustering. These results are stored in the `ResultsTable` data type, which extends the `DynamicTable` data type within the base HDMF schema. The `ResultsTable` schema represents each data sample as a row and includes columns for storing model outputs and information about the AI/ML workflow, such as which data were used for training, validation, and testing. | ||
|
||
By leveraging existing HDMF tools and standards, `HDMF-AI` provides a scalable and extensible framework for storing AI results in an accessible, standardized way that is compatible with other HDMF-based data formats, such as Neurodata Without Borders [@rubel2022neurodata], a popular data standard for neurophysiology, and HDMF-Seq, a format for storing taxonomic and genomic sequence data. By enabling standardized co-storage of data and AI results, `HDMF-AI` may enhance the reproducibility and explainability of AI for science. | ||
|
||
![UML diagram of the HDMF-AI schema. Data types with orange headers are introduced by HDMF-AI. Data types with blue headers are defined in HDMF. Fields colored in gray are optional.](paper/schema.png) | ||
|
||
## Installation | ||
|
||
```bash | ||
pip install hdmf-ai | ||
``` | ||
|
||
## Usage | ||
|
||
For example usage, see `example_usage.ipynb`. |