-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
27 changed files
with
2,395 additions
and
644 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -5,6 +5,10 @@ target/ | |
# files | ||
.DS_Store | ||
**/*.rs.bk | ||
*.aux | ||
*.log | ||
*.gz | ||
|
||
#/target | ||
/Cargo.lock |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,17 @@ | ||
\documentclass[tikz]{standalone} | ||
\usepackage{amssymb} | ||
\usepackage{amsmath} | ||
\usepackage{oubraces} | ||
\usepackage[customcolors]{hf-tikz} | ||
\definecolor{docsrscolor}{HTML}{f5f5f5} | ||
|
||
\newcommand{\myeqs}[1]{ | ||
\Huge | ||
\begin{tikzpicture} | ||
\node[ | ||
fill=docsrscolor, | ||
rounded corners=8mm, | ||
inner sep=8mm | ||
]{$#1$}; | ||
\end{tikzpicture} | ||
} |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,11 @@ | ||
\input{_preamble} | ||
\begin{document} | ||
\myeqs{ | ||
\mathcal{N}_{i,0}^{\boldsymbol{U}^{(k)}}(u) | ||
= | ||
\begin{cases} | ||
1, & u\in\left[u_i^{(k)},u_{i+1}^{(k)}\right)\,\lor\, (i=n-k \land u=1)\\ | ||
0, & \text{else} | ||
\end{cases} | ||
} | ||
\end{document} |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,10 @@ | ||
\input{_preamble} | ||
\begin{document} | ||
\myeqs{ | ||
\myeqs{ | ||
\mathcal{N}_{i,p-k}^{\boldsymbol{U}^{(k)}}(u) | ||
= \mu_{i,p-k-1}^{(k)}(u)\, \mathcal{N}_{i,p-k-1}^{\boldsymbol{U}^{(k)}}(u) | ||
+ \left[1-\mu_{i+1,p-k-1}^{(k)}(u)\right]\, \mathcal{N}_{i+1,p-k-1}^{\boldsymbol{U}^{(k)}}(u) | ||
} | ||
} | ||
\end{document} |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,11 @@ | ||
\input{_preamble} | ||
\begin{document} | ||
\myeqs{ | ||
\mu_{g,h}^{(k)}(u) | ||
= | ||
\begin{cases} | ||
0 & \text{if}\quad u_{g+h+1}^{(k)} = u_{g}^{(k)}\\[2mm] | ||
\frac{u-u_g^{(k)}}{u_{g+h+1}^{(k)}-u_g^{(k)}} & \text{else} | ||
\end{cases} | ||
} | ||
\end{document} |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,13 @@ | ||
\input{_preamble} | ||
\begin{document} | ||
\myeqs{ | ||
\boldsymbol{P}_i^{(k)}= | ||
\begin{cases} | ||
\boldsymbol{P}_{i}^{(0)} & k=0 \\[2mm] | ||
\left.\begin{cases} | ||
\boldsymbol{0} & u_{i+p+1}^{{(0)}} = u_{i+k}^{{(0)}}\\[2mm] | ||
\frac{p-k+1}{u_{i+p+1}^{{(0)}} - u_{i+k}^{{(0)}}} \left( \boldsymbol{P}_{i+1}^{(k-1)} - \boldsymbol{P}_{i}^{(k-1)} \right) & \text{else}%u_{i+p+1} \neq u_{i+k}\\[2mm] | ||
\end{cases}\right|& k>0 \\ | ||
\end{cases} | ||
} | ||
\end{document} |
This file was deleted.
Oops, something went wrong.
This file was deleted.
Oops, something went wrong.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,13 +1,8 @@ | ||
\documentclass[10pt]{article} | ||
\usepackage[usenames]{color} | ||
\usepackage{amssymb} | ||
\usepackage{amsmath} | ||
\usepackage{nicefrac} | ||
\definecolor{mygreen}{rgb}{0.454,0.824,0.208} | ||
\definecolor{myred}{rgb}{0.8,0.173,0.137} | ||
|
||
\usepackage[utf8]{inputenc} | ||
\begin{equation}\nonumber | ||
\mathcal{C}(u) = \sum_{i=0}^{n} \mathcal{N}_{i,p}^{\boldsymbol{U}} (u)\, \boldsymbol{P}_i,\quad u \in [u_p,u_{n+1}] | ||
\end{equation} | ||
\input{_preamble} | ||
\begin{document} | ||
\myeqs{ | ||
\mathcal{C}^{(k)}(u) = \frac{\partial^k\mathcal{C}^{(0)}(u)}{\partial u^k} = \sum_{i=0}^{n-k} \mathcal{N}_{i,p-k}^{\boldsymbol{U^{(k)}}} (u)\, \boldsymbol{P}^{(k)}_i,\quad | ||
u \in [u_{p-k},u_{n+1-k}],\quad | ||
n > p | ||
} | ||
\end{document} |
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,10 @@ | ||
for file in *.tex; do | ||
if [ "$file" != "_preamble.tex" ]; then | ||
echo "Processing file: $file" | ||
pdflatex -shell-escape -synctex=1 "$file" | grep '^!.*' -A200 | ||
pdf2svg "${file%.tex}.pdf" "${file%.tex}.svg" | ||
rm -f "${file%.tex}.aux" "${file%.tex}.log" "${file%.tex}.pdf" "${file%.tex}.pdf" "${file%.tex}.synctex.gz" | ||
else | ||
echo "Excluded file: $file" | ||
fi | ||
done |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,16 @@ | ||
\input{_preamble} | ||
\begin{document} | ||
\myeqs{ | ||
\boldsymbol{U}^{(k)} | ||
=\left\{u_i^{(k)}\right\} | ||
\equiv\overunderbraces{ | ||
&&\br{5}{\text{domain}\vphantom{p}} | ||
}{ | ||
\left\{\vphantom{u^{(k)}}\right. | ||
&u_{0}^{(k)},\dots,&u_{p-k}^{(k)}&, | ||
&u_{p-k+1}^{(k)}, \dots,u_{n-k}^{(k)} | ||
&,&u_{n+1-k}^{(k)}&,\dots,u_{n+p+1-2k}^{(k)}& \left.\vphantom{u^{(k)}}\right\}} | ||
{&\br{2}{p-k+1}&&\br{1}{n-p}&&\br{2}{1+p-k}},\quad | ||
u_{i}^{(k)}\leq u_{i+1}^{(k)}, | ||
} | ||
\end{document} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,191 @@ | ||
#![cfg_attr(feature = "doc-images", | ||
cfg_attr(all(), | ||
doc = ::embed_doc_image::embed_image!("eq-basis-function", "doc-images/equations/basis-function.svg"), | ||
doc = ::embed_doc_image::embed_image!("eq-basis-prefactor", "doc-images/equations/basis-prefactor.svg"), | ||
doc = ::embed_doc_image::embed_image!("eq-basis-function-zero", "doc-images/equations/basis-function-zero.svg")))] | ||
//! Evaluates the basis spline functions using the Cox-de Boor-Mansfield recurrence relation | ||
//! | ||
//! ![The Cox-de Boor-Mansfield recurrence relation][eq-basis-function] | ||
//! | ||
//! with the basis functions of degree `p = 0` | ||
//! | ||
//! ![Basis function of degree zero][eq-basis-function-zero] | ||
//! | ||
//! where the conditional `⋁ (i = n - k ⋀ u = U_{n+1-k)` closes the last interval | ||
//! and the pre-factors | ||
//! | ||
//! ![Pre-factors][eq-basis-prefactor] | ||
use crate::types::VecD; | ||
|
||
/// Evaluates the `i`-th basis spline function of degree `p` | ||
/// | ||
/// ## Arguments | ||
/// | ||
/// - `i` the index with `i ∈ {0, 1, ..., n}` | ||
/// - `p` the spline degree | ||
/// - `k` the derivative order | ||
/// - `U` the knot vector | ||
pub fn basis(Uk: &VecD, i: usize, p: usize, k: usize, n: usize, u: f64) -> f64 { | ||
if p == 0 { | ||
if (Uk[i] <= u && u < Uk[i + 1]) || (i == n - k && u == Uk[n + 1 - k]) { | ||
return 1.0; | ||
} | ||
return 0.0; | ||
} | ||
|
||
let summand1 = if Uk[i + p] == Uk[i] { | ||
0.0 | ||
} else { | ||
let g = i; | ||
let h = p - 1; | ||
(u - Uk[g]) / (Uk[g + h + 1] - Uk[g]) * basis(Uk, i, h, k, n, u) | ||
}; | ||
|
||
let summand2 = if Uk[i + 1 + p] == Uk[i + 1] { | ||
0.0 | ||
} else { | ||
let g = i + 1; | ||
let h = p - 1; | ||
|
||
// The following equation is numerically more stable than | ||
// `(1.0 - ((u - Uk[g]) / (Uk[g + h + 1] - Uk[g]))) * self.evaluate(k, g, h, u)` | ||
(Uk[g + p] - u) / (Uk[g + h + 1] - Uk[g]) * basis(Uk, g, h, k, n, u) | ||
}; | ||
|
||
summand1 + summand2 | ||
} | ||
|
||
#[cfg(test)] | ||
mod tests { | ||
use approx::assert_relative_eq; | ||
use nalgebra::dvector; | ||
|
||
use crate::curve::knots::Knots; | ||
|
||
const SEGMENTS: usize = 4; | ||
|
||
#[test] | ||
fn basis_func_degree3() { | ||
let k = 0; | ||
let p = 3; | ||
let knots = Knots::new(p, dvector![0., 0., 0., 0., 1. / 3., 2. / 3., 1., 1., 1., 1.]); | ||
|
||
// Basis function i = 0 | ||
let mut i = 0; | ||
assert_eq!(knots.evaluate(k, i, p, 0.0), 1.0); | ||
assert_eq!(knots.evaluate(k, i, p, 1. / 6.), 1. / 8.); | ||
assert_eq!(knots.evaluate(k, i, p, 1. / 3.), 0.0); | ||
assert_eq!(knots.evaluate(k, i, p, 1. / 2.), 0.0); | ||
assert_eq!(knots.evaluate(k, i, p, 2. / 3.), 0.0); | ||
assert_eq!(knots.evaluate(k, i, p, 5. / 6.), 0.0); | ||
assert_eq!(knots.evaluate(k, i, p, 1.), 0.0); | ||
|
||
i = 1; | ||
assert_eq!(knots.evaluate(k, i, p, 0.), 0.0); | ||
assert_eq!(knots.evaluate(k, i, p, 1. / 6.), 19. / 32.); | ||
assert_eq!(knots.evaluate(k, i, p, 1. / 3.), 1. / 4.); | ||
assert_relative_eq!(knots.evaluate(k, i, p, 1. / 2.), 1. / 32., epsilon = f64::EPSILON.sqrt()); | ||
assert_eq!(knots.evaluate(k, i, p, 2. / 3.), 0.0); | ||
assert_eq!(knots.evaluate(k, i, p, 5. / 6.), 0.0); | ||
assert_eq!(knots.evaluate(k, i, p, 1.), 0.0); | ||
|
||
i = 2; | ||
assert_eq!(knots.evaluate(k, i, p, 0.), 0.0); | ||
assert_eq!(knots.evaluate(k, i, p, 1. / 6.), 25. / 96.); | ||
assert_eq!(knots.evaluate(k, i, p, 1. / 3.), 7. / 12.); | ||
assert_relative_eq!(knots.evaluate(k, i, p, 1. / 2.), 15. / 32., epsilon = f64::EPSILON.sqrt()); | ||
assert_relative_eq!(knots.evaluate(k, i, p, 2. / 3.), 1. / 6., epsilon = f64::EPSILON.sqrt()); | ||
assert_relative_eq!(knots.evaluate(k, i, p, 5. / 6.), 1. / 48., epsilon = f64::EPSILON.sqrt()); | ||
assert_eq!(knots.evaluate(k, i, p, 1.0), 0.0); | ||
|
||
i = 3; | ||
assert_eq!(knots.evaluate(k, i, p, 0.), 0.0); | ||
assert_eq!(knots.evaluate(k, i, p, 1. / 6.), 1. / 48.); | ||
assert_eq!(knots.evaluate(k, i, p, 1. / 3.), 1. / 6.); | ||
assert_relative_eq!(knots.evaluate(k, i, p, 1. / 2.), 15. / 32., epsilon = f64::EPSILON.sqrt()); | ||
assert_relative_eq!(knots.evaluate(k, i, p, 2. / 3.), 7. / 12., epsilon = f64::EPSILON.sqrt()); | ||
assert_relative_eq!(knots.evaluate(k, i, p, 5. / 6.), 25. / 96., epsilon = f64::EPSILON.sqrt()); | ||
assert_eq!(knots.evaluate(k, i, p, 1.0), 0.0); | ||
|
||
i = 4; | ||
assert_eq!(knots.evaluate(k, i, p, 0.), 0.0); | ||
assert_eq!(knots.evaluate(k, i, p, 1. / 6.), 0.0); | ||
assert_eq!(knots.evaluate(k, i, p, 1. / 3.), 0.0); | ||
assert_relative_eq!(knots.evaluate(k, i, p, 1. / 2.), 1. / 32., epsilon = f64::EPSILON.sqrt()); | ||
assert_relative_eq!(knots.evaluate(k, i, p, 2. / 3.), 1. / 4., epsilon = f64::EPSILON.sqrt()); | ||
assert_relative_eq!(knots.evaluate(k, i, p, 5. / 6.), 19. / 32., epsilon = f64::EPSILON.sqrt()); | ||
assert_eq!(knots.evaluate(k, i, p, 1.0), 0.0); | ||
|
||
i = 5; | ||
assert_eq!(knots.evaluate(k, i, p, 0.0), 0.0); | ||
assert_eq!(knots.evaluate(k, i, p, 1. / 6.), 0.); | ||
assert_eq!(knots.evaluate(k, i, p, 1. / 3.), 0.0); | ||
assert_eq!(knots.evaluate(k, i, p, 1. / 2.), 0.0); | ||
assert_eq!(knots.evaluate(k, i, p, 2. / 3.), 0.0); | ||
assert_relative_eq!(knots.evaluate(k, i, p, 5. / 6.), 1. / 8., epsilon = f64::EPSILON.sqrt()); | ||
assert_eq!(knots.evaluate(k, i, p, 1.), 1.0); | ||
} | ||
|
||
#[test] | ||
fn basis_func_degree4() { | ||
let k = 1; | ||
let p = 4; | ||
let knots = Knots::new(p, dvector![0., 0., 0., 0., 0., 1. / 3., 2. / 3., 1., 1., 1., 1., 1.]); | ||
|
||
// Basis function i = 0 | ||
let mut i = 0; | ||
assert_eq!(knots.evaluate(k, i, p, 0.0), 1.0); | ||
assert_eq!(knots.evaluate(k, i, p, 1. / 6.), 1. / 8.); | ||
assert_eq!(knots.evaluate(k, i, p, 1. / 3.), 0.0); | ||
assert_eq!(knots.evaluate(k, i, p, 1. / 2.), 0.0); | ||
assert_eq!(knots.evaluate(k, i, p, 2. / 3.), 0.0); | ||
assert_eq!(knots.evaluate(k, i, p, 5. / 6.), 0.0); | ||
assert_eq!(knots.evaluate(k, i, p, 1.), 0.0); | ||
|
||
i = 1; | ||
assert_eq!(knots.evaluate(k, i, p, 0.), 0.0); | ||
assert_eq!(knots.evaluate(k, i, p, 1. / 6.), 19. / 32.); | ||
assert_eq!(knots.evaluate(k, i, p, 1. / 3.), 1. / 4.); | ||
assert_relative_eq!(knots.evaluate(k, i, p, 1. / 2.), 1. / 32., epsilon = f64::EPSILON.sqrt()); | ||
assert_eq!(knots.evaluate(k, i, p, 2. / 3.), 0.0); | ||
assert_eq!(knots.evaluate(k, i, p, 5. / 6.), 0.0); | ||
assert_eq!(knots.evaluate(k, i, p, 1.), 0.0); | ||
|
||
i = 2; | ||
assert_eq!(knots.evaluate(k, i, p, 0.), 0.0); | ||
assert_eq!(knots.evaluate(k, i, p, 1. / 6.), 25. / 96.); | ||
assert_eq!(knots.evaluate(k, i, p, 1. / 3.), 7. / 12.); | ||
assert_relative_eq!(knots.evaluate(k, i, p, 1. / 2.), 15. / 32., epsilon = f64::EPSILON.sqrt()); | ||
assert_relative_eq!(knots.evaluate(k, i, p, 2. / 3.), 1. / 6., epsilon = f64::EPSILON.sqrt()); | ||
assert_relative_eq!(knots.evaluate(k, i, p, 5. / 6.), 1. / 48., epsilon = f64::EPSILON.sqrt()); | ||
assert_eq!(knots.evaluate(k, i, p, 1.0), 0.0); | ||
|
||
i = 3; | ||
assert_eq!(knots.evaluate(k, i, p, 0.), 0.0); | ||
assert_eq!(knots.evaluate(k, i, p, 1. / 6.), 1. / 48.); | ||
assert_eq!(knots.evaluate(k, i, p, 1. / 3.), 1. / 6.); | ||
assert_relative_eq!(knots.evaluate(k, i, p, 1. / 2.), 15. / 32., epsilon = f64::EPSILON.sqrt()); | ||
assert_relative_eq!(knots.evaluate(k, i, p, 2. / 3.), 7. / 12., epsilon = f64::EPSILON.sqrt()); | ||
assert_relative_eq!(knots.evaluate(k, i, p, 5. / 6.), 25. / 96., epsilon = f64::EPSILON.sqrt()); | ||
assert_eq!(knots.evaluate(k, i, p, 1.0), 0.0); | ||
|
||
i = 4; | ||
assert_eq!(knots.evaluate(k, i, p, 0.), 0.0); | ||
assert_eq!(knots.evaluate(k, i, p, 1. / 6.), 0.0); | ||
assert_eq!(knots.evaluate(k, i, p, 1. / 3.), 0.0); | ||
assert_relative_eq!(knots.evaluate(k, i, p, 1. / 2.), 1. / 32., epsilon = f64::EPSILON.sqrt()); | ||
assert_relative_eq!(knots.evaluate(k, i, p, 2. / 3.), 1. / 4., epsilon = f64::EPSILON.sqrt()); | ||
assert_relative_eq!(knots.evaluate(k, i, p, 5. / 6.), 19. / 32., epsilon = f64::EPSILON.sqrt()); | ||
assert_eq!(knots.evaluate(k, i, p, 1.0), 0.0); | ||
|
||
i = 5; | ||
assert_eq!(knots.evaluate(k, i, p, 0.0), 0.0); | ||
assert_eq!(knots.evaluate(k, i, p, 1. / 6.), 0.); | ||
assert_eq!(knots.evaluate(k, i, p, 1. / 3.), 0.0); | ||
assert_eq!(knots.evaluate(k, i, p, 1. / 2.), 0.0); | ||
assert_eq!(knots.evaluate(k, i, p, 2. / 3.), 0.0); | ||
assert_relative_eq!(knots.evaluate(k, i, p, 5. / 6.), 1. / 8., epsilon = f64::EPSILON.sqrt()); | ||
assert_eq!(knots.evaluate(k, i, p, 1.), 1.0); | ||
} | ||
} |
Oops, something went wrong.