-
Lab 1 - Introduction
-
Lab 2 - Data Preparation
-
Lab 3 - Genetic Algorithms
-
Lab 4 - Evaluation in ML
-
Lab 5 - Linear Models
-
Lab 6 - Decision Trees and Feature Extraction
-
Lab 7 - Model Optimization - Cross Validation and Hyperparameter tuning
-
Lab 8 - Statistical Machine Learning
-
Lab 9 - Dimensionality Reduction
-
Lab 10 - Unsupervised Learning
-
Lab 11 - 12 - Final Project
You will need:
Python Editor
: Visual Studio Code (suggested, but you can use any other Python editor)Python: Anaconda distribution
: Anaconda Download
Clone this repository (If Git is not installed, run conda install git
in the command prompt.)
git clone [email protected]:hgamboa/nova-aaeb.git
cd nova-aaeb
Create a python environment
conda create -y -n aaeb python=3.11
conda activate aaeb
Install dependencies
pip install -r requirements.txt
Register the environment as a Jupyter Kernel
python -m ipykernel install --user --name="aaeb"