Skip to content

Experimental data used to create regression models of appliances energy use in a low energy building.

License

Notifications You must be signed in to change notification settings

hirenhk15/uci-appliances-energy-prediction

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Appliances Energy Usage Prediction

Project Overview

Description

Experimental data used to create regression models of appliances energy use in a low energy building.

Summary

Experimental data used to create regression models of appliances energy use in a low energy building.

Source: Luis Candanedo, luismiguel.candanedoibarra '@' umons.ac.be, University of Mons (UMONS).

Dataset Information

The data set is at 10 min for about 4.5 months. The house temperature and humidity conditions were monitored with a ZigBee wireless sensor network. Each wireless node transmitted the temperature and humidity conditions around 3.3 min. Then, the wireless data was averaged for 10 minutes periods. The energy data was logged every 10 minutes with m-bus energy meters. Weather from the nearest airport weather station (Chievres Airport, Belgium) was downloaded from a public data set from Reliable Prognosis (rp5.ru), and merged together with the experimental data sets using the date and time column. Two random variables have been included in the data set for testing the regression models and to filter out non predictive attributes (parameters).

Attribute Information

  1. date: year-month-day hour:minute:second
  2. Appliances: energy use in Wh (watt-hour)
  3. lights: energy use of light fixtures in the house in Wh (watt-hour)
  4. T1: Temperature in kitchen area, in Celsius
  5. RH_1: Humidity in kitchen area, in %
  6. T2: Temperature in living room area, in Celsius
  7. RH_2: Humidity in living room area, in %
  8. T3: Temperature in laundry room area
  9. RH_3: Humidity in laundry room area, in %
  10. T4: Temperature in office room, in Celsius
  11. RH_4: Humidity in office room, in %
  12. T5: Temperature in bathroom, in Celsius
  13. RH_5: Humidity in bathroom, in %
  14. T6: Temperature outside the building (north side), in Celsius
  15. RH_6: Humidity outside the building (north side), in %
  16. T7: Temperature in ironing room , in Celsius
  17. RH_7: Humidity in ironing room, in %
  18. T8: Temperature in teenager room 2, in Celsius
  19. RH_8: Humidity in teenager room 2, in %
  20. T9: Temperature in parents room, in Celsius
  21. RH_9: Humidity in parents room, in %
  22. To: Temperature outside (from Chievres weather station), in Celsius
  23. Pressure: (from Chievres weather station), in mm Hg
  24. RH_out: Humidity outside (from Chievres weather station), in %
  25. Wind speed: (from Chievres weather station), in m/s
  26. Visibility: (from Chievres weather station), in km
  27. Tdewpoint: (from Chievres weather station), °C
  28. rv1: Random variable 1, nondimensional
  29. rv2: Random variable 2, nondimensional

Where indicated, hourly data (then interpolated) from the nearest airport weather station (Chievres Airport, Belgium) was downloaded from a public data set from Reliable Prognosis, rp5.ru. Permission was obtained from Reliable Prognosis for the distribution of the 4.5 months of weather data.

About

Experimental data used to create regression models of appliances energy use in a low energy building.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published