Skip to content

Commit

Permalink
Browse files Browse the repository at this point in the history
  • Loading branch information
zickgraf committed May 17, 2023
1 parent 16c2b43 commit 011b4ba
Show file tree
Hide file tree
Showing 3 changed files with 85 additions and 81 deletions.
2 changes: 1 addition & 1 deletion PackageInfo.g
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@ SetPackageInfo( rec(

PackageName := "LazyCategories",
Subtitle := "Construct an equivalent lazy category out of a CAP category",
Version := "2023.05-01",
Version := "2023.05-02",
Date := ~.Version{[ 1 .. 10 ]},
Date := (function ( ) if IsBound( GAPInfo.SystemEnvironment.GAP_PKG_RELEASE_DATE ) then return GAPInfo.SystemEnvironment.GAP_PKG_RELEASE_DATE; else return Concatenation( ~.Version{[ 1 .. 4 ]}, "-", ~.Version{[ 6, 7 ]}, "-01" ); fi; end)( ),
License := "GPL-2.0-or-later",
Expand Down
80 changes: 41 additions & 39 deletions tst/TerminalCategoryMonoidal.tst
Original file line number Diff line number Diff line change
Expand Up @@ -8,9 +8,11 @@ gap> START_TEST("TerminalCategoryMonoidal.tst");
gap> LoadPackage("LazyCategories", false);
true

#
gap> T := TerminalCategoryWithMultipleObjects();;

gap> L := LazyCategory( T : primitive_operations := true, optimize := 0 );;
gap> opposite := Opposite( L, "Opposite with all operations" );;
gap> opposite_primitive := Opposite( L, "Opposite with primitive operations" : only_primitive_operations := true );;

##############################################
# MonoidalCategoriesTensorProductAndUnitTest
Expand All @@ -19,16 +21,16 @@ gap> L := LazyCategory( T : primitive_operations := true, optimize := 0 );;
gap> a := "a" / T / L;;
gap> b := "b" / T / L;;

gap> MonoidalCategoriesTensorProductAndUnitTest( L, a, b );;
gap> MonoidalCategoriesTensorProductAndUnitTest( L, a, b : only_primitive_operations := true );;
gap> MonoidalCategoriesTensorProductAndUnitTest( L, opposite, a, b );;
gap> MonoidalCategoriesTensorProductAndUnitTest( L, opposite_primitive, a, b );;

gap> z := ZeroObject( L );;

gap> MonoidalCategoriesTensorProductAndUnitTest( L, z, b );;
gap> MonoidalCategoriesTensorProductAndUnitTest( L, z, b : only_primitive_operations := true );;
gap> MonoidalCategoriesTensorProductAndUnitTest( L, opposite, z, b );;
gap> MonoidalCategoriesTensorProductAndUnitTest( L, opposite_primitive, z, b );;

gap> MonoidalCategoriesTensorProductAndUnitTest( L, a, z );;
gap> MonoidalCategoriesTensorProductAndUnitTest( L, a, z : only_primitive_operations := true );;
gap> MonoidalCategoriesTensorProductAndUnitTest( L, opposite, a, z );;
gap> MonoidalCategoriesTensorProductAndUnitTest( L, opposite_primitive, a, z );;

##############################################
# MonoidalCategoriesTest
Expand All @@ -47,19 +49,19 @@ gap> d := dT / L;;
gap> alpha := MorphismConstructor( aT, "f_ab", bT ) / L;;
gap> beta := MorphismConstructor( cT, "f_cd", dT ) / L;;

gap> MonoidalCategoriesTest( L, a, b, c, alpha, beta );;
gap> MonoidalCategoriesTest( L, a, b, c, alpha, beta : only_primitive_operations := true );;
gap> MonoidalCategoriesTest( L, opposite, a, b, c, alpha, beta );;
gap> MonoidalCategoriesTest( L, opposite_primitive, a, b, c, alpha, beta );;

gap> z := ZeroObject( L );;

gap> alpha := UniversalMorphismFromZeroObject( a );;
gap> beta := UniversalMorphismIntoZeroObject( a );;

gap> MonoidalCategoriesTest( L, z, a, a, alpha, beta );;
gap> MonoidalCategoriesTest( L, z, a, a, alpha, beta : only_primitive_operations := true );;
gap> MonoidalCategoriesTest( L, opposite, z, a, a, alpha, beta );;
gap> MonoidalCategoriesTest( L, opposite_primitive, z, a, a, alpha, beta );;

gap> MonoidalCategoriesTest( L, a, z, z, beta, alpha );;
gap> MonoidalCategoriesTest( L, a, z, z, beta, alpha : only_primitive_operations := true );;
gap> MonoidalCategoriesTest( L, opposite, a, z, z, beta, alpha );;
gap> MonoidalCategoriesTest( L, opposite_primitive, a, z, z, beta, alpha );;

##############################################
# AdditiveMonoidalCategoriesTest
Expand All @@ -68,8 +70,8 @@ gap> MonoidalCategoriesTest( L, a, z, z, beta, alpha : only_primitive_operations
gap> a := "a" / T / L;;
gap> l := [ "b" / T / L, "c" / T / L, "d" / T / L ];;

gap> AdditiveMonoidalCategoriesTest( L, a, l : only_primitive_operations := true );;
gap> AdditiveMonoidalCategoriesTest( L, a, l );;
gap> AdditiveMonoidalCategoriesTest( L, opposite_primitive, a, l );;
gap> AdditiveMonoidalCategoriesTest( L, opposite, a, l );;

##############################################
# BraidedMonoidalCategoriesTest
Expand All @@ -78,19 +80,19 @@ gap> AdditiveMonoidalCategoriesTest( L, a, l );;
gap> a := "a" / T / L;;
gap> b := "b" / T / L;;

gap> BraidedMonoidalCategoriesTest( L, a, b );;
gap> BraidedMonoidalCategoriesTest( L, a, b : only_primitive_operations := true );;
gap> BraidedMonoidalCategoriesTest( L, opposite, a, b );;
gap> BraidedMonoidalCategoriesTest( L, opposite_primitive, a, b );;

gap> BraidedMonoidalCategoriesTest( L, b, a );;
gap> BraidedMonoidalCategoriesTest( L, b, a : only_primitive_operations := true );;
gap> BraidedMonoidalCategoriesTest( L, opposite, b, a );;
gap> BraidedMonoidalCategoriesTest( L, opposite_primitive, b, a );;

gap> z := ZeroObject( L );;

gap> BraidedMonoidalCategoriesTest( L, z, a );;
gap> BraidedMonoidalCategoriesTest( L, z, a : only_primitive_operations := true );;
gap> BraidedMonoidalCategoriesTest( L, opposite, z, a );;
gap> BraidedMonoidalCategoriesTest( L, opposite_primitive, z, a );;

gap> BraidedMonoidalCategoriesTest( L, a, z );;
gap> BraidedMonoidalCategoriesTest( L, a, z : only_primitive_operations := true );;
gap> BraidedMonoidalCategoriesTest( L, opposite, a, z );;
gap> BraidedMonoidalCategoriesTest( L, opposite_primitive, a, z );;

##############################################
# ClosedMonoidalCategoriesTest
Expand Down Expand Up @@ -128,8 +130,8 @@ gap> delta := AsMorphismInLazyCategory( TensorProduct( c, d ), deltaT, TensorUni
gap> epsilon := AsMorphismInLazyCategory( TensorUnit( L ), epsilonT, InternalHom( a, b ) );;
gap> zeta := AsMorphismInLazyCategory( TensorUnit( L ), zetaT, InternalHom( c, d ) );;

gap> ClosedMonoidalCategoriesTest( L, a, b, c, d, alpha, beta, gamma, delta, epsilon, zeta );;
gap> ClosedMonoidalCategoriesTest( L, a, b, c, d, alpha, beta, gamma, delta, epsilon, zeta : only_primitive_operations := true );;
gap> ClosedMonoidalCategoriesTest( L, opposite, a, b, c, d, alpha, beta, gamma, delta, epsilon, zeta );;
gap> ClosedMonoidalCategoriesTest( L, opposite_primitive, a, b, c, d, alpha, beta, gamma, delta, epsilon, zeta );;

gap> zT := ZeroObject( T );;
gap> z := zT / L;;
Expand All @@ -154,8 +156,8 @@ gap> delta := AsMorphismInLazyCategory( TensorProduct( a, z ), deltaT, TensorUni
gap> epsilon := AsMorphismInLazyCategory( TensorUnit( L ), epsilonT, InternalHom( z, a ) );;
gap> zeta := AsMorphismInLazyCategory( TensorUnit( L ), zetaT, InternalHom( a, z ) );;

gap> ClosedMonoidalCategoriesTest( L, z, a, a, z, alpha, beta, gamma, delta, epsilon, zeta );;
gap> ClosedMonoidalCategoriesTest( L, z, a, a, z, alpha, beta, gamma, delta, epsilon, zeta : only_primitive_operations := true );;
gap> ClosedMonoidalCategoriesTest( L, opposite, z, a, a, z, alpha, beta, gamma, delta, epsilon, zeta );;
gap> ClosedMonoidalCategoriesTest( L, opposite_primitive, z, a, a, z, alpha, beta, gamma, delta, epsilon, zeta );;

##############################################
# CoclosedMonoidalCategoriesTest
Expand Down Expand Up @@ -193,8 +195,8 @@ gap> delta := AsMorphismInLazyCategory( TensorUnit( L ), deltaT, TensorProduct(
gap> epsilon := AsMorphismInLazyCategory( InternalCoHom( a, b ), epsilonT, TensorUnit( L ) );;
gap> zeta := AsMorphismInLazyCategory( InternalCoHom( c, d ), zetaT, TensorUnit( L ) );;

gap> CoclosedMonoidalCategoriesTest( L, a, b, c, d, alpha, beta, gamma, delta, epsilon, zeta );;
gap> CoclosedMonoidalCategoriesTest( L, a, b, c, d, alpha, beta, gamma, delta, epsilon, zeta : only_primitive_operations := true );;
gap> CoclosedMonoidalCategoriesTest( L, opposite, a, b, c, d, alpha, beta, gamma, delta, epsilon, zeta );;
gap> CoclosedMonoidalCategoriesTest( L, opposite_primitive, a, b, c, d, alpha, beta, gamma, delta, epsilon, zeta );;

gap> zT := ZeroObject( T );;
gap> z := zT / L;;
Expand All @@ -219,8 +221,8 @@ gap> delta := AsMorphismInLazyCategory( TensorUnit( L ), deltaT, TensorProduct(
gap> epsilon := AsMorphismInLazyCategory( InternalCoHom( z, a ), epsilonT, TensorUnit( L ) );;
gap> zeta := AsMorphismInLazyCategory( InternalCoHom( a, z ), zetaT, TensorUnit( L ) );;

gap> CoclosedMonoidalCategoriesTest( L, z, a, a, z, alpha, beta, gamma, delta, epsilon, zeta );;
gap> CoclosedMonoidalCategoriesTest( L, z, a, a, z, alpha, beta, gamma, delta, epsilon, zeta : only_primitive_operations := true );;
gap> CoclosedMonoidalCategoriesTest( L, opposite, z, a, a, z, alpha, beta, gamma, delta, epsilon, zeta );;
gap> CoclosedMonoidalCategoriesTest( L, opposite_primitive, z, a, a, z, alpha, beta, gamma, delta, epsilon, zeta );;

##############################################
# RigidSymmetricClosedMonoidalCategoriesTest
Expand All @@ -233,15 +235,15 @@ gap> d := "d" / T / L;;

gap> alpha := IdentityMorphism( a );;

gap> RigidSymmetricClosedMonoidalCategoriesTest( L, a, b, c, d, alpha );;
gap> RigidSymmetricClosedMonoidalCategoriesTest( L, a, b, c, d, alpha : only_primitive_operations := true );;
gap> RigidSymmetricClosedMonoidalCategoriesTest( L, opposite, a, b, c, d, alpha );;
gap> RigidSymmetricClosedMonoidalCategoriesTest( L, opposite_primitive, a, b, c, d, alpha );;

gap> z := ZeroObject( L );;

gap> alpha := IdentityMorphism( a );;

gap> RigidSymmetricClosedMonoidalCategoriesTest( L, z, b, c, z, alpha );;
gap> RigidSymmetricClosedMonoidalCategoriesTest( L, z, b, c, z, alpha : only_primitive_operations := true );;
gap> RigidSymmetricClosedMonoidalCategoriesTest( L, opposite, z, b, c, z, alpha );;
gap> RigidSymmetricClosedMonoidalCategoriesTest( L, opposite_primitive, z, b, c, z, alpha );;

##############################################
# RigidSymmetricCoclosedMonoidalCategoriesTest
Expand All @@ -254,15 +256,15 @@ gap> d := "d" / T / L;;

gap> alpha := IdentityMorphism( a );;

gap> RigidSymmetricCoclosedMonoidalCategoriesTest( L, a, b, c, d, alpha );;
gap> RigidSymmetricCoclosedMonoidalCategoriesTest( L, a, b, c, d, alpha : only_primitive_operations := true );;
gap> RigidSymmetricCoclosedMonoidalCategoriesTest( L, opposite, a, b, c, d, alpha );;
gap> RigidSymmetricCoclosedMonoidalCategoriesTest( L, opposite_primitive, a, b, c, d, alpha );;

gap> z := ZeroObject( L );;

gap> alpha := IdentityMorphism( a );;

gap> RigidSymmetricCoclosedMonoidalCategoriesTest( L, a, b, c, d, alpha );;
gap> RigidSymmetricCoclosedMonoidalCategoriesTest( L, a, b, c, d, alpha : only_primitive_operations := true );;
gap> RigidSymmetricCoclosedMonoidalCategoriesTest( L, opposite, a, b, c, d, alpha );;
gap> RigidSymmetricCoclosedMonoidalCategoriesTest( L, opposite_primitive, a, b, c, d, alpha );;

##############################################

Expand Down
Loading

0 comments on commit 011b4ba

Please sign in to comment.