Skip to content

Latest commit

 

History

History
236 lines (194 loc) · 8.59 KB

path_decider_cn.md

File metadata and controls

236 lines (194 loc) · 8.59 KB

路径决策

目录

概览

路径决策是规划模块的任务,属于task中的decider类别。

规划模块的运动总体流程图如下:

总体流程图

总体流程图以lane follow场景为例子进行说明。task的主要功能位于Process函数中。

Fig.1的具体运行过程可以参考path_bounds_decider

路径决策相关代码及对应版本

在上一个任务中获得了最优的路径,路径决策的功能是根据静态障碍物做出自车的决策。

路径决策的代码是Apollo r6.0.0 path_decider

  • 输入

Status PathDecider::Process(const ReferenceLineInfo *reference_line_info, const PathData &path_data, PathDecision *const path_decision)

  • 输出

路径决策的信息都保存到了path_decision中。

路径决策代码流程及框架

路径决策的整体流程如下图:

流程图

Process函数主要功能是调用了MakeObjectDecision函数。而在MakeObjectDecision函数中调用了MakeStaticObstacleDecision函数。

路径决策的主要功能都在MakeStaticObstacleDecision中。

Status PathDecider::Process(const ReferenceLineInfo *reference_line_info,
                            const PathData &path_data,
                            PathDecision *const path_decision) {
  // skip path_decider if reused path
  if (FLAGS_enable_skip_path_tasks && reference_line_info->path_reusable()) {
    return Status::OK();
  }

  std::string blocking_obstacle_id;
  if (reference_line_info->GetBlockingObstacle() != nullptr) {
    blocking_obstacle_id = reference_line_info->GetBlockingObstacle()->Id();
  }
  // 调用MakeObjectDecision函数
  if (!MakeObjectDecision(path_data, blocking_obstacle_id, path_decision)) {
    const std::string msg = "Failed to make decision based on tunnel";
    AERROR << msg;
    return Status(ErrorCode::PLANNING_ERROR, msg);
  }
  return Status::OK();
}

bool PathDecider::MakeObjectDecision(const PathData &path_data,
                                     const std::string &blocking_obstacle_id,
                                     PathDecision *const path_decision) {
  // path decider的主要功能在MakeStaticObstacleDecision中
  if (!MakeStaticObstacleDecision(path_data, blocking_obstacle_id,
                                  path_decision)) {
    AERROR << "Failed to make decisions for static obstacles";
    return false;
  }
  return true;
}

路径决策相关算法解析

针对上述的path-decider的流程图,进行代码分析。

  • 获取frenet坐标系下的坐标
  ... ...
  // 1.获取frenet坐标下的path路径
  const auto &frenet_path = path_data.frenet_frame_path();
  if (frenet_path.empty()) {
    AERROR << "Path is empty.";
    return false;
  }
  ... ...
  • 根据障碍物做决策
  ... ...
  // 2.遍历每个障碍物,做决策
  for (const auto *obstacle : path_decision->obstacles().Items()) {
    const std::string &obstacle_id = obstacle->Id();
    const std::string obstacle_type_name =
        PerceptionObstacle_Type_Name(obstacle->Perception().type());
    ADEBUG << "obstacle_id[<< " << obstacle_id << "] type["
           << obstacle_type_name << "]";
    ... ...

上图的红框中是循环体的主要内容,主要功能是遍历每个障碍物做决策。

  • 如果障碍物不是静态或virtual,则跳过
    // 2.1 如果障碍物不是静态的或者是virtual的,就跳过
    if (!obstacle->IsStatic() || obstacle->IsVirtual()) {    // (stop fence,各种fence)
      continue;
    }
  • 如果障碍物有了ignore/stop决策,则跳过
    // 2.2 如果障碍物已经有 ignore/stop 决策,就跳过
    if (obstacle->HasLongitudinalDecision() &&
        obstacle->LongitudinalDecision().has_ignore() &&
        obstacle->HasLateralDecision() &&
        obstacle->LateralDecision().has_ignore()) {
      continue;
    }
    if (obstacle->HasLongitudinalDecision() &&
        obstacle->LongitudinalDecision().has_stop()) {
      // STOP decision
      continue;
    }
  • 如果障碍物挡住了路径,加stop决策
    // 2.3 如果障碍物挡住了路径,加stop决策
    if (obstacle->Id() == blocking_obstacle_id &&
        !injector_->planning_context()
             ->planning_status()
             .path_decider()
             .is_in_path_lane_borrow_scenario()) {
      // Add stop decision
      ADEBUG << "Blocking obstacle = " << blocking_obstacle_id;
      ObjectDecisionType object_decision;
      *object_decision.mutable_stop() = GenerateObjectStopDecision(*obstacle);
      path_decision->AddLongitudinalDecision("PathDecider/blocking_obstacle",
                                             obstacle->Id(), object_decision);
      continue;
    }
  • 如果是clear-zone,跳过
    // 2.4 如果是clear-zone,跳过
    if (obstacle->reference_line_st_boundary().boundary_type() ==
        STBoundary::BoundaryType::KEEP_CLEAR) {
      continue;
    }
  • 如果障碍物不在路径上,跳过
    // 2.5 如果障碍物不在路径上,跳过
    ObjectDecisionType object_decision;
    object_decision.mutable_ignore();
    const auto &sl_boundary = obstacle->PerceptionSLBoundary();
    if (sl_boundary.end_s() < frenet_path.front().s() ||
        sl_boundary.start_s() > frenet_path.back().s()) {
      path_decision->AddLongitudinalDecision("PathDecider/not-in-s",
                                             obstacle->Id(), object_decision);
      path_decision->AddLateralDecision("PathDecider/not-in-s", obstacle->Id(),
                                        object_decision);
      continue;
    }
  • nudge判断
    // 2.6 nudge判断,如果距离静态障碍物距离太远,则忽略。
    //               如果静态障碍物距离车道中心太近,则停止。
    //               如果横向方向很近,则避开。
    if (curr_l - lateral_radius > sl_boundary.end_l() ||
        curr_l + lateral_radius < sl_boundary.start_l()) {
      // 1. IGNORE if laterally too far away.
      path_decision->AddLateralDecision("PathDecider/not-in-l", obstacle->Id(),
                                        object_decision);
    } else if (sl_boundary.end_l() >= curr_l - min_nudge_l &&
               sl_boundary.start_l() <= curr_l + min_nudge_l) {
      // 2. STOP if laterally too overlapping.
      *object_decision.mutable_stop() = GenerateObjectStopDecision(*obstacle);

      if (path_decision->MergeWithMainStop(
              object_decision.stop(), obstacle->Id(),
              reference_line_info_->reference_line(),
              reference_line_info_->AdcSlBoundary())) {
        path_decision->AddLongitudinalDecision("PathDecider/nearest-stop",
                                               obstacle->Id(), object_decision);
      } else {
        ObjectDecisionType object_decision;
        object_decision.mutable_ignore();
        path_decision->AddLongitudinalDecision("PathDecider/not-nearest-stop",
                                               obstacle->Id(), object_decision);
      }
    } else {
      // 3. NUDGE if laterally very close.
      if (sl_boundary.end_l() < curr_l - min_nudge_l) {  // &&
        // sl_boundary.end_l() > curr_l - min_nudge_l - 0.3) {
        // LEFT_NUDGE
        ObjectNudge *object_nudge_ptr = object_decision.mutable_nudge();
        object_nudge_ptr->set_type(ObjectNudge::LEFT_NUDGE);
        object_nudge_ptr->set_distance_l(
            config_.path_decider_config().static_obstacle_buffer());
        path_decision->AddLateralDecision("PathDecider/left-nudge",
                                          obstacle->Id(), object_decision);
      } else if (sl_boundary.start_l() > curr_l + min_nudge_l) {  // &&
        // sl_boundary.start_l() < curr_l + min_nudge_l + 0.3) {
        // RIGHT_NUDGE
        ObjectNudge *object_nudge_ptr = object_decision.mutable_nudge();
        object_nudge_ptr->set_type(ObjectNudge::RIGHT_NUDGE);
        object_nudge_ptr->set_distance_l(
            -config_.path_decider_config().static_obstacle_buffer());
        path_decision->AddLateralDecision("PathDecider/right-nudge",
                                          obstacle->Id(), object_decision);
      }
    }