Skip to content

Implementations of basic RL algorithms with minimal lines of codes! (pytorch based)

License

Notifications You must be signed in to change notification settings

hotephen/minimalRL

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

76 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

minimalRL-pytorch

Implementations of basic RL algorithms with minimal lines of codes! (PyTorch based)

  • Each algorithm is complete within a single file.

  • Length of each file is up to 100~150 lines of codes.

  • Every algorithm can be trained within 30 seconds, even without GPU.

  • Envs are fixed to "CartPole-v1". You can just focus on the implementations.

Algorithms

  1. REINFORCE (67 lines)
  2. Vanilla Actor-Critic (98 lines)
  3. DQN (112 lines, including replay memory and target network)
  4. PPO (119 lines, including GAE)
  5. DDPG (147 lines, including OU noise and soft target update)
  6. A3C (129 lines)
  7. ACER (149 lines)
  8. A2C added! (188 lines)
  9. Any suggestion ..?

Dependencies

  1. PyTorch
  2. OpenAI GYM

Usage

# Works only with Python 3.
# e.g.
python3 REINFORCE.py
python3 actor_critic.py
python3 dqn.py
python3 ppo.py
python3 ddpg.py
python3 a3c.py
python3 a2c.py
python3 acer.py

About

Implementations of basic RL algorithms with minimal lines of codes! (pytorch based)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%